912 research outputs found
Determination of the strange-quark mass from QCD pseudoscalar sum rules
A new determination of the strange-quark mass is discussed, based on the
two-point function involving the axial-vector current divergences. This Green
function is known in perturbative QCD up to order O(alpha_s^3), and up to
dimension-six in the non-perturbative domain. The hadronic spectral function is
parametrized in terms of the kaon pole, followed by its two radial excitations,
and normalized at threshold according to conventional chiral-symmetry. The
result of a Laplace transform QCD sum rule analysis of this two-point function
is: m_s(1 GeV^2) = 155 pm 25 MeV.Comment: Invited talk given by CAD at QCD98, Montpellier, July 1998. To appear
in Nucl.Phys.B Proc.Suppl. Latex File. Four (double column) page
Stability of sub-surface oxygen at Rh(111)
Using density-functional theory (DFT) we investigate the incorporation of
oxygen directly below the Rh(111) surface. We show that oxygen incorporation
will only commence after nearly completion of a dense O adlayer (\theta_tot =
1.0 monolayer) with O in the fcc on-surface sites. The experimentally suggested
octahedral sub-surface site occupancy, inducing a site-switch of the on-surface
species from fcc to hcp sites, is indeed found to be a rather low energy
structure. Our results indicate that at even higher coverages oxygen
incorporation is followed by oxygen agglomeration in two-dimensional
sub-surface islands directly below the first metal layer. Inside these islands,
the metastable hcp/octahedral (on-surface/sub-surface) site combination will
undergo a barrierless displacement, introducing a stacking fault of the first
metal layer with respect to the underlying substrate and leading to a stable
fcc/tetrahedral site occupation. We suggest that these elementary steps,
namely, oxygen incorporation, aggregation into sub-surface islands and
destabilization of the metal surface may be more general and precede the
formation of a surface oxide at close-packed late transition metal surfaces.Comment: 9 pages including 9 figure files. Submitted to Phys. Rev. B. Related
publications can be found at http://www.fhi-berlin.mpg.de/th/paper.htm
Potential, core-level and d band shifts at transition metal surfaces
We have extended the validity of the correlation between the surface
3d-core-level shift (SCLS) and the surface d band shift (SDBS) to the entire 4d
transition metal series and to the neighboring elements Sr and Ag via accurate
first-principles calculations. We find that the correlation is quasilinear and
robust with respect to the differencies both between initial and final-state
calculations of the SCLS's and two distinct measures of the SDBS's. We show
that despite the complex spatial dependence of the surface potential shift
(SPS) and the location of the 3d and 4d orbitals in different regions of space,
the correlation exists because the sampling of the SPS by the 3d and 4d
orbitals remains similar. We show further that the sign change of the SCLS's
across the transition series does indeed arise from the d band-narrowing
mechanism previously proposed. However, while in the heavier transition metals
the predicted increase of d electrons in the surface layer relative to the bulk
arises primarily from transfers from s and p states to d states within the
surface layer, in the lighter transition metals the predicted decrease of
surface d electrons arises primarily from flow out into the vacuum.Comment: RevTex, 22 pages, 5 figures in uufiles form, to appear in Phys.Rev.
Adlayer core-level shifts of random metal overlayers on transition-metal substrates
We calculate the difference of the ionization energies of a core-electron of
a surface alloy, i.e., a B-atom in a A_(1-x) B_x overlayer on a
fcc-B(001)-substrate, and a core-electron of the clean fcc-B(001) surface using
density-functional-theory. We analyze the initial-state contributions and the
screening effects induced by the core hole, and study the influence of the
alloy composition for a number of noble metal-transition metal systems. Data
are presented for Cu_(1-x)Pd_x/Pd(001), Ag_(1-x) Pd_x/Pd(001), Pd_(1-x)
Cu_x/Cu(001), and Pd_(1-x) Ag_x/Ag(001), changing x from 0 to 100 %. Our
analysis clearly indicates the importance of final-state screening effects for
the interpretation of measured core-level shifts. Calculated deviations from
the initial-state trends are explained in terms of the change of inter- and
intra-atomic screening upon alloying. A possible role of alloying on the
chemical reactivity of metal surfaces is discussed.Comment: 4 pages, 2 figures, Phys. Rev. Letters, to appear in Feb. 199
Surface Core Level Shifts of Clean and Oxygen Covered Ru(0001)
We have performed high resolution XPS experiments of the Ru(0001) surface,
both clean and covered with well-defined amounts of oxygen up to 1 ML coverage.
For the clean surface we detected two distinct components in the Ru 3d_{5/2}
core level spectra, for which a definite assignment was made using the high
resolution Angle-Scan Photoelectron Diffraction approach. For the p(2x2),
p(2x1), (2x2)-3O and (1x1)-O oxygen structures we found Ru 3d_{5/2} core level
peaks which are shifted up to 1 eV to higher binding energies. Very good
agreement with density functional theory calculations of these Surface Core
Level Shifts (SCLS) is reported. The overriding parameter for the resulting Ru
SCLSs turns out to be the number of directly coordinated O atoms. Since the
calculations permit the separation of initial and final state effects, our
results give valuable information for the understanding of bonding and
screening at the surface, otherwise not accessible in the measurement of the
core level energies alone.Comment: 16 pages including 10 figures. Submitted to Phys. Rev. B. Related
publications can be found at http://www.fhi-berlin.mpg.de/th/paper.htm
Towards Reliable Automatic Protein Structure Alignment
A variety of methods have been proposed for structure similarity calculation,
which are called structure alignment or superposition. One major shortcoming in
current structure alignment algorithms is in their inherent design, which is
based on local structure similarity. In this work, we propose a method to
incorporate global information in obtaining optimal alignments and
superpositions. Our method, when applied to optimizing the TM-score and the GDT
score, produces significantly better results than current state-of-the-art
protein structure alignment tools. Specifically, if the highest TM-score found
by TMalign is lower than (0.6) and the highest TM-score found by one of the
tested methods is higher than (0.5), there is a probability of (42%) that
TMalign failed to find TM-scores higher than (0.5), while the same probability
is reduced to (2%) if our method is used. This could significantly improve the
accuracy of fold detection if the cutoff TM-score of (0.5) is used.
In addition, existing structure alignment algorithms focus on structure
similarity alone and simply ignore other important similarities, such as
sequence similarity. Our approach has the capacity to incorporate multiple
similarities into the scoring function. Results show that sequence similarity
aids in finding high quality protein structure alignments that are more
consistent with eye-examined alignments in HOMSTRAD. Even when structure
similarity itself fails to find alignments with any consistency with
eye-examined alignments, our method remains capable of finding alignments
highly similar to, or even identical to, eye-examined alignments.Comment: Peer-reviewed and presented as part of the 13th Workshop on
Algorithms in Bioinformatics (WABI2013
Analysis of meteorology-chemistry interactions during air pollution episodes using online coupled models within AQMEII Phase-2
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).This study reviews the top ranked meteorology and chemistry interactions in online coupled models recommended by an experts’ survey conducted in COST Action EuMetChem and examines the sensitivity of those interactions during two pollution episodes: the Russian forest fires 25 Jul -15 Aug 2010 and a Saharan dust transport event from 1 Oct -31 Oct 2010 as a part of the AQMEII phase-2 exercise. Three WRF-Chem model simulations were performed for the forest fire case for a baseline without any aerosol feedback on meteorology, a simulation with aerosol direct effects only and a simulation including both direct and indirect effects. For the dust case study, eight WRF-Chem and one WRF-CMAQ simulations were selected from the set of simulations conducted in the framework of AQMEII. Of these two simulations considered no feedbacks, two included direct effects only and five simulations included both direct and indirect effects. The results from both episodes demonstrate that it is important to include the meteorology and chemistry interactions in online-coupled models. Model evaluations using routine observations collected in AQMEII phase-2 and observations from a station in Moscow show that for the fire case the simulation including only aerosol direct effects has better performance than the simulations with no aerosol feedbacks or including both direct and indirect effects. The normalized mean biases are significantly reduced by 10-20% for PM10 when including aerosol direct effects. The analysis for the dust case confirms that models perform better when including aerosol direct effects, but worse when including both aerosol direct and indirect effects, which suggests that the representation of aerosol indirect effects needs to be improved in the model.Peer reviewedFinal Published versio
The strange-quark mass from QCD sum rules in the pseudoscalar channel
QCD Laplace transform sum rules, involving the axial-vector current
divergences, are used in order to determine the strange quark mass. The
two-point function is known in QCD up to four loops in perturbation theory, and
up to dimension-six in the non-perturbative sector. The hadronic spectral
function is reconstructed using threshold normalization from chiral symmetry,
together with experimental data for the two radial excitations of the kaon. The
result for the running strange quark mass, in the scheme at a scale
of 1 is: .Comment: 10 pages. Latex file. 2 Figures obtained from author CAD upon reques
Reachability analysis for neural agent-environment systems
We develop a novel model for studying agent-environment systems, where the agents are implemented via feed-forward ReLU neural networks. We provide a semantics and develop a method to verify automatically that no unwanted states are reached by the system during its evolution. We study several reachability problems for the system, ranging from one-step reachability, to fixed multi-step and arbitrary-step to study the system evolution. We also study the decision problem of whether an agent, realised via feed-forward ReLU networks will perform an action in a system run. Whenever possible, we give tight complexity bounds to decision problems intro- duced. We automate the various reachability problems stud- ied by recasting them as mixed-integer linear programming problems. We present an implementation and discuss the ex- perimental results obtained on a range of test cases
Composition and structure of the RuO2(110) surface in an O2 and CO environment: implications for the catalytic formation of CO2
The phase diagram of surface structures for the model catalyst RuO2(110) in
contact with a gas environment of O2 and CO is calculated by density-functional
theory and atomistic thermodynamics. Adsorption of the reactants is found to
depend crucially on temperature and partial pressures in the gas phase.
Assuming that a catalyst surface under steady-state operation conditions is
close to a constrained thermodynamic equilibrium, we are able to rationalize a
number of experimental findings on the CO oxidation over RuO2(110). We also
calculated reaction pathways and energy barriers. Based on the various results
the importance of phase coexistence conditions is emphasized as these will lead
to an enhanced dynamics at the catalyst surface. Such conditions may actuate an
additional, kinetically controlled reaction mechanism on RuO2(110).Comment: 12 pages including 8 figure files. Submitted to Phys. Rev. B. Related
publications can be found at http://www.fhi-berlin.mpg.de/th/paper.htm
- …
