133 research outputs found

    Measurements for liquid rocket engine performance code verification

    Get PDF
    The goal of the rocket engine performance code verification tests is to obtain the I sub sp with an accuracy of 0.25% or less. This needs to be done during the sequence of four related tests (two reactive and two hot gas simulation) to best utilize the loss separation technique recommended in this study. In addition to I sub sp, the measurements of the input and output parameters for the codes are needed. This study has shown two things in regard to obtaining the I sub sp uncertainty within the 0.25% target. First, this target is generally not being realized at the present time, and second, the instrumentation and testing technology does exist to obtain this 0.25% uncertainty goal. However, to achieve this goal will require carefully planned, designed, and conducted testing. In addition, the test-stand (or system) dynamics must be evaluated in the pre-test and post-test phases of the design of the experiment and data analysis, respectively always keeping in mind that a .25% overall uncertainty in I sub sp is targeted. A table gives the maximum allowable uncertainty required for obtaining I sub sp with 0.25% uncertainty, the currently-quoted instrument specification, and present test uncertainty for the parameters. In general, it appears that measurement of the mass flow parameter within the required uncertainty may be the most difficult

    Borrowed Body

    Get PDF

    Structural reliability analysis of laminated CMC components

    Get PDF
    For laminated ceramic matrix composite (CMC) materials to realize their full potential in aerospace applications, design methods and protocols are a necessity. The time independent failure response of these materials is focussed on and a reliability analysis is presented associated with the initiation of matrix cracking. A public domain computer algorithm is highlighted that was coupled with the laminate analysis of a finite element code and which serves as a design aid to analyze structural components made from laminated CMC materials. Issues relevant to the effect of the size of the component are discussed, and a parameter estimation procedure is presented. The estimation procedure allows three parameters to be calculated from a failure population that has an underlying Weibull distribution

    Analysis of whisker-toughened ceramic components: A design engineer's viewpoint

    Get PDF
    The use of ceramics components in gas turbines, cutting tools, and heat exchangers has been limited by the relatively low flaw tolerance of monolithic ceramics. The development of whisker toughened ceramic composites offers the potential for considerable improvement in fracture toughness as well as strength. However, the variability of strength is still too high for the application of deterministic design approaches. Several phenomenological reliability theories proposed for this material system are reviewed and the development is reported of a public domain computer algorithm. This algorithm, when coupled with a general purpose finite element program, predicts the fast fracture reliability of a structural component under multiaxial loading conditions

    Interactive Reliability Model for Whisker-toughened Ceramics

    Get PDF
    Wider use of ceramic matrix composites (CMC) will require the development of advanced structural analysis technologies. The use of an interactive model to predict the time-independent reliability of a component subjected to multiaxial loads is discussed. The deterministic, three-parameter Willam-Warnke failure criterion serves as the theoretical basis for the reliability model. The strength parameters defining the model are assumed to be random variables, thereby transforming the deterministic failure criterion into a probabilistic criterion. The ability of the model to account for multiaxial stress states with the same unified theory is an improvement over existing models. The new model was coupled with a public-domain finite element program through an integrated design program. This allows a design engineer to predict the probability of failure of a component. A simple structural problem is analyzed using the new model, and the results are compared to existing models

    Utilization of the AEDC three-dimensional potential flow computer program

    Get PDF
    A potential flow computer program which has been in use for several years, was discussed. This program has been used primarily as a tool for flow-field analysis in support of test activities in transonic wind tunnels. Analyses have been made over a Mach number range from 0 to 0.9 for a variety of configurations from aircraft to wind tunnels, with excellent agreement between calculated flow fields and measured wind tunnel data. Analytical and experimental data for seven different flow analysis problems are presented in this paper

    Parameter estimation techniques based on optimizing goodness-of-fit statistics for structural reliability

    Get PDF
    New methods are presented that utilize the optimization of goodness-of-fit statistics in order to estimate Weibull parameters from failure data. It is assumed that the underlying population is characterized by a three-parameter Weibull distribution. Goodness-of-fit tests are based on the empirical distribution function (EDF). The EDF is a step function, calculated using failure data, and represents an approximation of the cumulative distribution function for the underlying population. Statistics (such as the Kolmogorov-Smirnov statistic and the Anderson-Darling statistic) measure the discrepancy between the EDF and the cumulative distribution function (CDF). These statistics are minimized with respect to the three Weibull parameters. Due to nonlinearities encountered in the minimization process, Powell's numerical optimization procedure is applied to obtain the optimum value of the EDF. Numerical examples show the applicability of these new estimation methods. The results are compared to the estimates obtained with Cooper's nonlinear regression algorithm
    • …
    corecore