2,853 research outputs found

    The Effect of Ice Formations on Propeller Performance

    Get PDF
    Measurements of propeller efficiency loss due to ice formation are supplemented by an analysis to establish the magnitude of efficiency losses to be anticipated during flight in icing conditions. The measurements were made during flight in natural icing conditions; whereas the analysis consisted of an investIgation of changes in blade-section aerodynamic characteristics caused by ice formation and the resulting propeller efficiency changes. Agreement in the order of magnitude of eff 1- ciency losses to be expected is obtained between measured and analytical results. The results indicate that, in general, efficiency losses can be expected to be less than 10 percent; whereas maximum losses, which will be encountered only rarely, may be as high as 15 or 20 percent. Reported. losses larger than 15 or 20 percent, based on reductions in airplane performance, probably are due to ice accretions on other parts of the airplane. Blade-element theory is used in the analytical treatment, and calculations are made to show the degree to which the aerodynamic characteristics of a blade section. must be altered to produce various propeller efficiency losses. The effects of ice accretions on airfoil-section characteristics at subcritical speeds and their influence on drag-divergence Mach number are examined, and. the attendant maximum efficiency losses are computed. The effect of kinetic heating on the radial extent of ice formation is considered, and its influence on required length of blade heating shoes is discussed. It is demonstrated how the efficiency loss resulting from an icing encounter is influenced by the decisions of the pilot in adjusting the engine and propeller controls

    Observations on North Dakota Sponges (Haplosclerina: Spongillidae) and Sisyrids (Neuroptera: Sisyridae)

    Get PDF
    Factors influencing occurrence, distribution, and ecology of sponges and sisyrids are discussed, with emphasis on northeastern North Dakota. New state records for North Dakota sponges, Eunapius Jraguis Leidy and Ephydatia fluviatilis L. and the sisyrids, Sisyra vicaria (Hagen) and Climacia areolaris (Hagen), and new county records for C. areolaris in northwestern Minnesota and Eunapius fragilis in northeastern North Dakota are reported. A rare association of the parasite, S. vicaria with the host, Ephydatia fluviatilis is also reported. Some physicochcmical relations of Eunapius fragilis found in the Forest River, North Dakota, are discussed

    Functional requirements for onboard management of space shuttle consumables, volume 1

    Get PDF
    A study was conducted to determine the functional requirements for onboard management of space shuttle consumables. A generalized consumable management concept was developed for application to advanced spacecraft. The subsystems and related consumables selected for inclusion in the consumables management system are: (1) propulsion, (2) power generation, and (3) environmental and life support

    Controlled Contact to a C60 Molecule

    Get PDF
    The conductance of C60 on Cu(100) is investigated with a low-temperature scanning tunneling microscope. At the transition from tunneling to the contact regime the conductance of C60 adsorbed with a pentagon-hexagon bond rises rapidly to 0.25 conductance quanta G0. An abrupt conductance jump to G0 is observed upon further decreasing the distance between the instrument's tip and the surface. Ab-initio calculations within density functional theory and non-equilibrium Green's function techniques explain the experimental data in terms of the conductance of an essentially undeformed C60. From a detailed analysis of the crossover from tunneling to contact we conclude that the conductance in this region is strongly affected by structural fluctuations which modulate the tip-molecule distance.Comment: 4 pages, 3 figure

    Study of airborne science experiment management concepts for application to space shuttle. Volume 3: Appendixes

    Get PDF
    Detailed information is presented concerning specific airborne missions in support of the ASSESS program. These missions are the AIDJEX expeditions, meteor shower expeditions, CAT and atmospheric sampling missions, ocean color expeditions, and the Lear Jet missions. For Vol. 2, see N73-31729

    NASA/ESACV-990 spacelab simulation. Appendix B: Experiment development and performance

    Get PDF
    Eight experiments flown on the CV-990 airborne laboratory during the NASA/ESA joint Spacelab simulation mission are described in terms of their physical arrangement in the aircraft, their scientific objectives, developmental considerations dictated by mission requirements, checkout, integration into the aircraft, and the inflight operation and performance of the experiments

    NASA/ESA CT-990 Spacelab simulation. Appendix A: The experiment operator

    Get PDF
    A joint NASA/ESA endeavor was established to conduct an extensive spacelab simulation using the NASA CV-990 airborne laboratory. The scientific payload was selected to perform studies in upper atmospheric physics and infrared astronomy with principal investigators from France, the Netherlands, England, and several groups from the United States. Two experiment operators from Europe and two from the U.S. were selected to live aboard the aircraft along with a mission manager for a six-day period and operate the experiments in behalf of the principal scientists. This appendix discusses the experiment operators and their relationship to the joint mission under the following general headings: selection criteria, training programs, and performance. The performance of the proxy operators was assessed in terms of adequacy of training, amount of scientific data obtained, quality of data obtained, and reactions to problems that arose in experiment operation

    Thermally Activated Magnetization and Resistance Decay during Near Ambient Temperature Aging of Co Nanoflakes in a Confining Semi-metallic Environment

    Full text link
    We report the observation of magnetic and resistive aging in a self assembled nanoparticle system produced in a multilayer Co/Sb sandwich. The aging decays are characterized by an initial slow decay followed by a more rapid decay in both the magnetization and resistance. The decays are large accounting for almost 70% of the magnetization and almost 40% of the resistance for samples deposited at 35 oC^oC. For samples deposited at 50 oC^oC the magnetization decay accounts for 50\sim 50% of the magnetization and 50% of the resistance. During the more rapid part of the decay, the concavity of the slope of the decay changes sign and this inflection point can be used to provide a characteristic time. The characteristic time is strongly and systematically temperature dependent, ranging from 1\sim1x102s10^2 s at 400K to 3\sim3x105s10^5 s at 320K in samples deposited at 35oC35 ^oC. Samples deposited at 50 oC^oC displayed a 7-8 fold increase in the characteristic time (compared to the 35oC35 ^oC samples) for a given aging temperature, indicating that this timescale may be tunable. Both the temperature scale and time scales are in potentially useful regimes. Pre-Aging, Scanning Tunneling Microscopy (STM) reveals that the Co forms in nanoscale flakes. During aging the nanoflakes melt and migrate into each other in an anisotropic fashion forming elongated Co nanowires. This aging behavior occurs within a confined environment of the enveloping Sb layers. The relationship between the characteristic time and aging temperature fits an Arrhenius law indicating activated dynamics
    corecore