8,508 research outputs found
Readout electrode assembly for measuring biological impedance
The invention comprises of a pair of readout ring electrodes which are used in conjunction with apparatus for measuring the electrical impedance between different points in the body of a living animal to determine the amount of blood flow therebetween. The readout electrodes have independently adjustable diameters to permit attachment around different parts of the body between which it is desired to measure electric impedance. The axial spacing between the electrodes is adjusted by a pair of rods which have a first pair of ends fixedly attached to one electrode and a second pair of ends slidably attached to the other electrode. Indicia are provided on the outer surface of the ring electrodes and on the surface of the rods to permit measurement of the circumference and spacing between the ring electrodes
Finger recording electrode system for electrical impedance plethysmograph
System facilitates location of recording electrodes of impedance plethysmograph that is used for measuring flow of blood in finger segment; electrodes can be relocated accurately and volume of finger segment under study can be determined precisely. System minimizes movement artifacts in plethysmograph trace because finger segment is held firmly
Mating Behavior and Male Territoriality in Enallagma vesperum (Odonata: Coenagrionidae) on Ponds in Ohio and Northern Michigan
Author Institution: Biology Department, The University of FindlayThe crepuscular damselfly Enallagma vesperum Calvert, was studied to document and clarify mating behavior. This paper is a descriptive synthesis of observations which answer basic questions regarding mating behavior of E. vesperum. Beginning in July 2004 and continuing in the summers through September 2009, approximately 140 hours of direct observation on a lake in
Northern Michigan and a lake and two ponds in Ohio were logged to support the results and conclusions. The literature regarding mating behavior in E. vesperum provides little information about male territoriality. The results from this six-year study offer strong evidence of male territory selection and territory defense. Copulatory behavior and ovipositional behavior were also recorded. In
most coenagrionid species, males remain in tandem with ovipositing females unless the females submerge. In this study, however, females were observed ovipositing in tandem or individually into surface vegetation
Implications of single-neuron gain scaling for information transmission in networks
Summary: 

Many neural systems are equipped with mechanisms to efficiently encode sensory information. To represent natural stimuli with time-varying statistical properties, neural systems should adjust their gain to the inputs' statistical distribution. Such matching of dynamic range to input statistics has been shown to maximize the information transmitted by the output spike trains (Brenner et al., 2000, Fairhall et al., 2001). Gain scaling has not only been observed as a system response property, but also in single neurons in developing somatosensory cortex stimulated with currents of different amplitude (Mease et al., 2010). While gain scaling holds for cortical neurons at the end of the first post-natal week, at birth these neurons lack this property. The observed improvement in gain scaling coincides with the disappearance of spontaneous waves of activity in cortex (Conheim et al., 2010).

We studied how single-neuron gain scaling affects the dynamics of signal transmission in networks, using the developing cortex as a model. In a one-layer feedforward network, we showed that the absence of gain control made the network relatively insensitive to uncorrelated local input fluctuations. As a result, these neurons selectively and synchronously responded to large slowly-varying correlated input--the slow build up of synaptic noise generated in pacemaker circuits which most likely triggers waves. Neurons in gain scaling networks were more sensitive to the small-scale input fluctuations, and responded asynchronously to the slow envelope. Thus, gain scaling both increases information in individual neurons about private inputs and allows the population average to encode the slow fluctuations in the input. Paradoxically, the synchronous firing that corresponds to wave propagation is associated with low information transfer. We therefore suggest that the emergence of gain scaling may help the system to increase information transmission on multiple timescales as sensory stimuli become important later in development. 

Methods:

Networks with one and two layers consisting of hundreds of model neurons were constructed. The ability of single neurons to gain scale was controlled by changing the ratio of sodium to potassium conductances in Hodgkin-Huxley neurons (Mainen et al., 1995). The response of single layer networks was studied with ramp-like stimuli with slopes that varied over several hundreds of milliseconds. Fast fluctuations were superimposed on this slowly-varying mean. Then the response to these networks was tested with continuous stimuli. Gain scaling networks captured the slow fluctuations in the inputs, while non-scaling networks simply thresholded the input. Quantifying information transmission confirmed that gain scaling neurons transmit more information about the stimulus. With the two-layer networks we simulated a cortical network where waves could spontaneously emerge, propagate and degrade, based on the gain scaling properties of the neurons in the network
Performance of alumina-supported Pt catalysts in an electron-beam-sustained CO2 laser amplifier
The performance of an alumina-supported Pt catalyst system used to maintain the gas purity in an electron-beam-sustained (636) isotope CO2 laser amplifier has been tested. The system characteristics using the two-zone, parallel flow reactor were determined for both continuous- and end-of-day reactor operation using on-line mass spectrometric sampling. The laser amplifier was run with an energy loading of typically 110 J-l/atm and an electron-beam current of 4 mA/sq cm. With these conditions and a pulse repetition frequency of 10 Hz for up to 10,000 shots, increases on the order of 100 ppm O2 were observed with the purifier on and 150 ppm with it off. The 1/e time recovery time was found to be approximately 75 minutes
The Geometric Phase and Gravitational Precession of D-Branes
We study Berry's phase in the D0-D4-brane system. When a D0-brane moves in
the background of D4-branes, the first excited states undergo a holonomy
described by a non-Abelian Berry connection. At weak coupling this is an SU(2)
connection over R^5, known as the Yang monopole. At strong coupling, the
holonomy is recast as the classical gravitational precession of a spinning
particle. The Berry connection is the spin connection of the near-horizon limit
of the D4-branes, which is a continuous deformation of the Yang and anti-Yang
monopole.Comment: 23 pages; v3: typos correcte
Lazy training of radial basis neural networks
Proceeding of: 16th International Conference on Artificial Neural Networks, ICANN 2006. Athens, Greece, September 10-14, 2006Usually, training data are not evenly distributed in the input space. This makes non-local methods, like Neural Networks, not very accurate in those cases. On the other hand, local methods have the problem of how to know which are the best examples for each test pattern. In this work, we present a way of performing a trade off between local and non-local methods. On one hand a Radial Basis Neural Network is used like learning algorithm, on the other hand a selection of the training patterns is used for each query. Moreover, the RBNN initialization algorithm has been modified in a deterministic way to eliminate any initial condition influence. Finally, the new method has been validated in two time series domains, an artificial and a real world one.This article has been financed by the Spanish founded research MEC project OPLINK::UC3M, Ref: TIN2005-08818-C04-0
How model sets can be determined by their two-point and three-point correlations
We show that real model sets with real internal spaces are determined, up to
translation and changes of density zero by their two- and three-point
correlations. We also show that there exist pairs of real (even one
dimensional) aperiodic model sets with internal spaces that are products of
real spaces and finite cyclic groups whose two- and three-point correlations
are identical but which are not related by either translation or inversion of
their windows. All these examples are pure point diffractive.
Placed in the context of ergodic uniformly discrete point processes, the
result is that real point processes of model sets based on real internal
windows are determined by their second and third moments.Comment: 19 page
- …
