85 research outputs found

    Dose-dense adjuvant chemotherapy for primary breast cancer

    Get PDF
    Adjuvant chemotherapy has been proven to reduce significantly the risk for relapse and death in women with operable breast cancer. Nevertheless, the prognosis for patients presenting with extensive axillary lymph node involvement remains suboptimal. In an attempt to improve on the efficacy of existing chemotherapy, a phase III intergroup trial led by the Cancer and Leukemia Group B (CALGB 97-41) was designed, which tested a mathematical model of tumor growth based on the Norton–Simon hypothesis. This hypothesis, developed about 3 decades ago, and the kinetic model derived from it, created the basis of the concepts of dose density and sequential therapy, both of which were tested in CALGB 97-41. This large prospective randomized trial demonstrated that shortening the time interval between each chemotherapy cycle while maintaining the same dose size resulted in significant improvements in disease-free and overall survival in patients with node-positive breast carcinoma. This finding is highly relevant and has immediate implications for clinical practice

    Engineering Of Nanoscale Defect Patterns In Ceo2 Nanorods Via Ex Situ And In Situ Annealing

    No full text
    Single-crystalline ceria nanorods were fabricated using a hydrothermal process and annealed at 325°C-800°C. As-synthesized CeO2 nanorods contain a high concentration of defects, such as oxygen vacancies and high lattice strains. Annealing resulted in an improved lattice crystalline quality along with the evolution of novel cavity-shaped defects in the nanorods with polyhedral morphologies and bound by e.g. {111} and {100} (internal) surfaces, confirmed for both air (ex situ) and vacuum (in situ) heating. We postulate that the cavities evolve via agglomeration of vacancies within the as-synthesized nanorods

    Engineering of nanoscale defect patterns in CeO2nanorods via ex situ and in situ annealing

    Get PDF
    Single-crystalline ceria nanorods were fabricated using a hydrothermal process and annealed at 325 °C–800 °C. As-synthesized CeO2 nanorods contain a high concentration of defects, such as oxygen vacancies and high lattice strains. Annealing resulted in an improved lattice crystalline quality along with the evolution of novel cavity-shaped defects in the nanorods with polyhedral morphologies and bound by e.g. {111} and {100} (internal) surfaces, confirmed for both air (ex situ) and vacuum (in situ) heating. We postulate that the cavities evolve via agglomeration of vacancies within the as-synthesized nanorods
    • …
    corecore