179 research outputs found

    Political brands: can parties be distinguished by their online brand personality?

    Get PDF
    This paper investigates whether or not five English political parties are differentiating themselves based on the brand personality they are communicating through their websites. The relative brand positions of five English political parties are analysed using Aaker’s brand personality scale. The text from each party website is analysed using content analysis and a dictionary-based tool. The results are plotted in relation to one another on a correspondence analysis map. We find that the two main dimensions on which parties' brand personalities differ relate to the trade-offs between communicating Competence and communicating Sincerity, and between communicating Sophistication and communicating Ruggedness. We find that parties' brand personalities are distinctive, with the exception of the Green party, and that the position of one party, the United Kingdom Independence Party, is particularly distinctive. Our research uses Aaker’s existing framework for thinking about brand personalities, rather than creating a new framework for politics. By using an existing framework, we are able to use tools developed in other disciplines, and show their usefulness for the study of political marketing

    Wt1 is required for cardiovascular progenitor cell formation through transcriptional control of Snail and E-cadherin

    Get PDF
    Epicardial epithelial-mesenchymal transition (EMT) is hypothesized to generate cardiovascular progenitor cells that differentiate into various cell types, including coronary smooth muscle and endothelial cells, perivascular and cardiac interstitial fibroblasts and cardiomyocytes. Here we show that an epicardial-specific knockout of Wt1 leads to a reduction of mesenchymal progenitor cells and their derivatives. We demonstrate that Wt1 is essential for repression of the epithelial phenotype in epicardial cells and during Embryonic Stem (ES) cell differentiation, through direct transcriptional regulation of Snail (Snai1) and E-cadherin (Cdh1), two of the major mediators of EMT. Some mesodermal lineages fail to form in Wt1 null embryoid bodies but this effect is rescued by the expression of Snai1, underlining the importance of EMT in generating these differentiated cells. These new insights into the molecular mechanisms regulating cardiovascular progenitor cells and EMT will shed light on the pathogenesis of heart diseases and may help the development of cell based therapies

    Increased Expression in Dorsolateral Prefrontal Cortex of CAPON in Schizophrenia and Bipolar Disorder

    Get PDF
    BACKGROUND: We have previously reported linkage of markers on chromosome 1q22 to schizophrenia, a finding supported by several independent studies. Within this linkage region, we have identified significant linkage disequilibrium between schizophrenia and markers within the gene for carboxyl-terminal PDZ ligand of neuronal nitric oxide synthase (CAPON). Prior sequencing of the ten exons of CAPON failed to reveal a coding mutation associated with illness. METHODS AND FINDINGS: We screened a human fetal brain cDNA library and identified a new isoform of CAPON that consists of the terminal two exons of the gene, and verified the expression of the predicted corresponding protein in human dorsolateral prefrontal cortex (DLPFC). We examined the expression levels of both the ten-exon CAPON transcript and this new isoform in postmortem brain samples from the Stanley Array Collection. Quantitative real-time PCR analysis of RNA from the DLPFC in 105 individuals (35 with schizophrenia, 35 with bipolar disorder, and 35 psychiatrically normal controls) revealed significantly (p < 0.005) increased expression of the new isoform in both schizophrenia and bipolar disorder. Furthermore, this increased expression was significantly associated (p < 0.05) with genotype at three single-nucleotide polymorphisms previously identified as being in linkage disequilibrium with schizophrenia. CONCLUSION: Based on the known interactions between CAPON, neuronal nitric oxide synthase (nNOS), and proteins associated with the N-methyl-D-aspartate receptor (NMDAR) complex, overexpression of either CAPON isoform would be expected to disrupt the association between nNOS and the NMDAR, leading to changes consistent with the NMDAR hypofunctioning hypothesis of schizophrenia. This study adds support to a role of CAPON in schizophrenia, produces new evidence implicating this gene in the etiology of bipolar disorder, and suggests a possible mechanism of action of CAPON in psychiatric illness

    Nkx3.2 Promotes Primary Chondrogenic Differentiation by Upregulating Col2a1 Transcription

    Get PDF
    Background: The Nkx3.2 transcription factor promotes chondrogenesis by forming a positive regulatory loop with a crucial chondrogenic transcription factor, Sox9. Previous studies have indicated that factors other than Sox9 may promote chondrogenesis directly, but these factors have not been identified. Here, we test the hypothesis that Nkx3.2 promotes chondrogenesis directly by Sox9-independent mechanisms and indirectly by previously characterized Sox9-dependent mechanisms. Methodology/Principal Findings: C3H10T1/2 pluripotent mesenchymal cells were cultured with bone morphogenetic protein 2 (BMP2) to induce endochondral ossification. Overexpression of wild-type Nkx3.2 (WT-Nkx3.2) upregulated glycosaminoglycan (GAG) production and expression of type II collagen a1 (Col2a1) mRNA, and these effects were evident before WT-Nkx3.2-mediated upregulation of Sox9. RNAi-mediated inhibition of Nkx3.2 abolished GAG production and expression of Col2a1 mRNA. Dual luciferase reporter assays revealed that WT-Nkx3.2 upregulated Col2a1 enhancer activity in a dose-dependent manner in C3H10T1/2 cells and also in N1511 chondrocytes. In addition, WT-Nkx3.2 partially restored downregulation of GAG production, Col2 protein expression, and Col2a1 mRNA expression induced by Sox9 RNAi. ChIP assays revealed that Nkx3.2 bound to the Col2a1 enhancer element. Conclusions/Significance: Nkx3.2 promoted primary chondrogenesis by two mechanisms: Direct and Sox9-independen

    When TADs go bad: chromatin structure and nuclear organisation in human disease

    Get PDF
    Chromatin in the interphase nucleus is organised as a hierarchical series of structural domains, including self-interacting domains called topologically associating domains (TADs). This arrangement is thought to bring enhancers into closer physical proximity with their target genes, which often are located hundreds of kilobases away in linear genomic distance. TADs are demarcated by boundary regions bound by architectural proteins, such as CTCF and cohesin, although much remains to be discovered about the structure and function of these domains. Recent studies of TAD boundaries disrupted in engineered mouse models show that boundary mutations can recapitulate human developmental disorders as a result of aberrant promoter-enhancer interactions in the affected TADs. Similar boundary disruptions in certain cancers can result in oncogene overexpression, and CTCF binding sites at boundaries appear to be hyper-mutated across cancers. Further insights into chromatin organisation, in parallel with accumulating whole genome sequence data for disease cohorts, are likely to yield additional valuable insights into the roles of noncoding sequence variation in human disease

    Disease-Causing 7.4 kb Cis-Regulatory Deletion Disrupting Conserved Non-Coding Sequences and Their Interaction with the FOXL2 Promotor: Implications for Mutation Screening

    Get PDF
    To date, the contribution of disrupted potentially cis-regulatory conserved non-coding sequences (CNCs) to human disease is most likely underestimated, as no systematic screens for putative deleterious variations in CNCs have been conducted. As a model for monogenic disease we studied the involvement of genetic changes of CNCs in the cis-regulatory domain of FOXL2 in blepharophimosis syndrome (BPES). Fifty-seven molecularly unsolved BPES patients underwent high-resolution copy number screening and targeted sequencing of CNCs. Apart from three larger distant deletions, a de novo deletion as small as 7.4 kb was found at 283 kb 5β€² to FOXL2. The deletion appeared to be triggered by an H-DNA-induced double-stranded break (DSB). In addition, it disrupts a novel long non-coding RNA (ncRNA) PISRT1 and 8 CNCs. The regulatory potential of the deleted CNCs was substantiated by in vitro luciferase assays. Interestingly, Chromosome Conformation Capture (3C) of a 625 kb region surrounding FOXL2 in expressing cellular systems revealed physical interactions of three upstream fragments and the FOXL2 core promoter. Importantly, one of these contains the 7.4 kb deleted fragment. Overall, this study revealed the smallest distant deletion causing monogenic disease and impacts upon the concept of mutation screening in human disease and developmental disorders in particular

    Interplay of Nkx3.2, Sox9 and Pax3 Regulates Chondrogenic Differentiation of Muscle Progenitor Cells

    Get PDF
    Muscle satellite cells make up a stem cell population that is capable of differentiating into myocytes and contributing to muscle regeneration upon injury. In this work we investigate the mechanism by which these muscle progenitor cells adopt an alternative cell fate, the cartilage fate. We show that chick muscle satellite cells that normally would undergo myogenesis can be converted to express cartilage matrix proteins in vitro when cultured in chondrogenic medium containing TGFß3 or BMP2. In the meantime, the myogenic program is repressed, suggesting that muscle satellite cells have undergone chondrogenic differentiation. Furthermore, ectopic expression of the myogenic factor Pax3 prevents chondrogenesis in these cells, while chondrogenic factors Nkx3.2 and Sox9 act downstream of TGFß or BMP2 to promote this cell fate transition. We found that Nkx3.2 and Sox9 repress the activity of the Pax3 promoter and that Nkx3.2 acts as a transcriptional repressor in this process. Importantly, a reverse function mutant of Nkx3.2 blocks the ability of Sox9 to both inhibit myogenesis and induce chondrogenesis, suggesting that Nkx3.2 is required for Sox9 to promote chondrogenic differentiation in satellite cells. Finally, we found that in an in vivo mouse model of fracture healing where muscle progenitor cells were lineage-traced, Nkx3.2 and Sox9 are significantly upregulated while Pax3 is significantly downregulated in the muscle progenitor cells that give rise to chondrocytes during fracture repair. Thus our in vitro and in vivo analyses suggest that the balance of Pax3, Nkx3.2 and Sox9 may act as a molecular switch during the chondrogenic differentiation of muscle progenitor cells, which may be important for fracture healing

    Intriguing Balancing Selection on the Intron 5 Region of LMBR1 in Human Population

    Get PDF
    Background: The intron 5 of gene LMBR1 is the cis-acting regulatory module for the sonic hedgehog (SHH) gene. Mutation in this non-coding region is associated with preaxial polydactyly, and may play crucial roles in the evolution of limb and skeletal system. Methodology/Principal Findings: We sequenced a region of the LMBR1 gene intron 5 in East Asian human population, and found a significant deviation of Tajima’s D statistics from neutrality taking human population growth into account. Data from HapMap also demonstrated extended linkage disequilibrium in the region in East Asian and European population, and significantly low degree of genetic differentiation among human populations. Conclusion/Significance: We proposed that the intron 5 of LMBR1 was presumably subject to balancing selection during the evolution of modern human
    • …
    corecore