1,005 research outputs found
Interplay between finite resources and local defect in an asymmetric simple exclusion process
When particle flux is regulated by multiple factors such as particle supply
and varying transport rate, it is important to identify the respective dominant
regimes. We extend the well-studied totally asymmetric simple exclusion model
to investigate the interplay between a controlled entrance and a local defect
site. The model mimics cellular transport phenomena where there is typically a
finite particle pool and non-uniform moving rates due to biochemical kinetics.
Our simulations reveal regions where, despite an increasing particle supply,
the current remains constant while particles redistribute in the system.
Exploiting a domain wall approach with mean-field approximation, we provide a
theoretical ground for our findings. The results in steady state current and
density profiles provide quantitative insights into the regulation of the
transcription and translation process in bacterial protein synthesis. We
investigate the totally asymmetric simple exclusion model with controlled
entrance and a defect site in the bulk to mimic the finite particle pool and
non-uniform moving rates in particle transport processes.Comment: 9 pages, 12 figures; v2: minor format changes; v3: major revision,
additional references; v4: minor format change to figures, additional
reference
RESTRICTION OF SPECIFICITY IN THE PRECURSORS OF BONE MARROW-ASSOCIATED LYMPHOCYTES
Previous work has shown that the immediate precursor of B lymphocytes (PB cell) has many properties that distinguish it from both B lymphoctes and hemopoietic stem cells. Size, density, tissue distribution, and sensitivity to cytotoxic antisera differ for each type of cell. The work described here was designed to study three aspects of the differentiation of PB cells. First, since PB cells probably have immunoglobulin surface receptors, fluorescein-labeled anti-immunoglobulin antiserum was used in an attempt to investigate directly the physical properties of PB cells. The use of this labeled antiserum revealed a population of cells with properties similar to the PB cells defined by the functional assays. Second, the differentiative potential of PB cells was studied by comparing the size of the total population of PB cells, as determined with fluorescein-labeled anti-immunoglobulin antiserum, to the size of the population of PB cells responding in a functional assay with a specific antigen. The cells responding in the functional assay represent only 0.1% of the total population of PB cells. This observation suggests that PB cells are not pluripotent stem cells of the immune system. Finally, the kinetics of the differentiation of PB cells to B lymphocytes was studied. The differentiation to mature lymphocytes involves at least one intermediate stage in which cells larger than mature B cells are active in a functional assay for B cells. These large B cells are present in irradiated mice soon after transplantation of PB cells, but by 20 days the majority of the B cells are typical small lymphocytes
An individual reproduction model sensitive to milk yield and body condition in Holstein dairy cows
To simulate the consequences of management in dairy herds, the use of individual-based herd models is very useful and has become common. Reproduction is a key driver of milk production and herd dynamics, whose influence has been magnified by the decrease in reproductive performance over the last decades. Moreover, feeding management influences milk yield (MY) and body reserves, which in turn influence reproductive performance. Therefore, our objective was to build an up-to-date animal reproduction model sensitive to both MY and body condition score (BCS). A dynamic and stochastic individual reproduction model was built mainly from data of a single recent long-term experiment. This model covers the whole reproductive process and is composed of a succession of discrete stochastic events, mainly calving, ovulations, conception and embryonic loss. Each reproductive step is sensitive to MY or BCS levels or changes. The model takes into account recent evolutions of reproductive performance, particularly concerning calving-to-first ovulation interval, cyclicity (normal cycle length, prevalence of prolonged luteal phase), oestrus expression and pregnancy (conception, early and late embryonic loss). A sensitivity analysis of the model to MY and BCS at calving was performed. The simulated performance was compared with observed data from the database used to build the model and from the bibliography to validate the model. Despite comprising a whole series of reproductive steps, the model made it possible to simulate realistic global reproduction outputs. It was able to well simulate the overall reproductive performance observed in farms in terms of both success rate (recalving rate) and reproduction delays (calving interval). This model has the purpose to be integrated in herd simulation models to usefully test the impact of management strategies on herd reproductive performance, and thus on calving patterns and culling rate
Role of CC chemokine CCL6/C10 as a monocyte chemoattractant in a murine acute peritonitis.
The aim of this study was to determine the role of CC chemokine CCL6/C10 in acute inflammation. Intraperitoneal injection of thioglycollate increased peritoneal CCL6, which peaked at 4 h and remained elevated at 48 h. Neutralization of CCL6 significantly inhibited the macrophage infiltration (34-48% reduction), but not other cell types, without decreasing the other CC chemokines known to attract monocytes/macrophages. CCL6 was expressed in peripheral eosinophils and elicited macrophages, but not in elicited neutrophils. Peritoneal CCL6 level was not decreased in granulocyte-depleted mice where eosinophil influx was significantly impaired. Thus, CCL6 appears to contribute to the macrophage infiltration that is independent of other CC chemokines. Eosinophils pre-store CCL6, but do not release CCL6 in the peritoneum in this model of inflammation
A milk urea model to better assess nitrogen excretion and feeding practice in dairy systems
A milk urea model to better assess nitrogen excretion and feeding practice in dairy systems. 20. Nitrogen Worksho
The Annual Carbon Budget for Fen and Forest in a Wetland at Arctic Treeline
Three separate research efforts conducted in the same wetland-peatland system in the northern Hudson Bay Lowland near the town of Churchill, Manitoba, allow a comparison of two carbon budget estimates, one derived from long-term growth rates of organic soil and the other based on shorter-term flux measurements. For a tundra fen and an open subarctic forest, calculations of organic soil accumulation or loss over the last half-century indicate that while the fen on average has lost small amounts of carbon from the ecosystem, the adjacent forest has gained larger amounts of atmospheric carbon dioxide. These longer-term data are supported by shorter-term flux measurements and estimates, which also show carbon loss by the fen and carbon uptake by the forest. The shorter-term data indicate that the fen's carbon loss is largely attributable to exceptionally dry years, especially if they are warm. The forest may gain carbon at an increased rate as it matures and during warm growing seasons. Also, the changes in relief of the dynamic hummock-hollow landscape in the fen may inhibit photosynthesis.Trois travaux de recherche distincts portant sur le même système de marécages/tourbières situés dans la partie septentrionale des basses-terres de la baie d'Hudson, près de la ville de Churchill au Manitoba, permettent de comparer deux estimations du budget de carbone, l'une tirée des taux de croissance à long terme du sol organique et l'autre fondée sur des mesures du flux à plus court terme. Pour une tourbière basse de toundra et une forêt claire subarctique, les calculs de l'accumulation ou de la perte de sol organique au cours des cinquante dernières années révèlent que, si la tourbière basse a perdu en moyenne de petites quantités du carbone présent dans l'écosystème, la forêt adjacente a acquis des quantités plus grandes de bioxyde de carbone atmosphérique. Ces données établies sur une période relativement longue sont étayées par des mesures et estimations du flux à plus court terme, qui révèlent également une perte de carbone par la tourbière basse et une absorption de carbone par la forêt. Les données à plus court terme montrent que la perte de carbone par la tourbière basse est due en grande partie à des années de sécheresse exceptionnelle, surtout s'il fait chaud. Il se peut que la forêt acquière du carbone à une vitesse accrue en devenant mature et au cours des saisons de croissance chaudes. Il est en outre possible que les changements dans le relief dynamique en bosses et en creux de la tourbière basse bloquent la photosynthèse
- …