6,323 research outputs found
Spontaneous Circulation in Ground-State Spinor Dipolar Bose-Einstein Condensates
We report on a study of the spin-1 ferromagnetic Bose-Einstein condensate
with magnetic dipole-dipole interactions. By solving the non-local
Gross-Pitaevskii equations for this system, we find three ground-state phases.
Moreover, we show that a substantial orbital angular momentum accompanied by
chiral symmetry breaking emerges spontaneously in a certain parameter regime.
We predict that all these phases can be observed in the spin-1 Rb
condensate by changing the number of atoms or the trap frequency.Comment: final versio
Feasibility study of an Integrated Program for Aerospace vehicle Design (IPAD). Volume 6: IPAD system development and operation
The strategy of the IPAD implementation plan presented, proposes a three phase development of the IPAD system and technical modules, and the transfer of this capability from the development environment to the aerospace vehicle design environment. The system and technical module capabilities for each phase of development are described. The system and technical module programming languages are recommended as well as the initial host computer system hardware and operating system. The cost of developing the IPAD technology is estimated. A schedule displaying the flowtime required for each development task is given. A PERT chart gives the developmental relationships of each of the tasks and an estimate of the operational cost of the IPAD system is offered
On the classical equivalence of monodromy matrices in squashed sigma model
We proceed to study the hybrid integrable structure in two-dimensional
non-linear sigma models with target space three-dimensional squashed spheres. A
quantum affine algebra and a pair of Yangian algebras are realized in the sigma
models and, according to them, there are two descriptions to describe the
classical dynamics 1) the trigonometric description and 2) the rational
description, respectively. For every description, a Lax pair is constructed and
the associated monodromy matrix is also constructed. In this paper we show the
gauge-equivalence of the monodromy matrices in the trigonometric and rational
description under a certain relation between spectral parameters and the
rescalings of sl(2) generators.Comment: 32pages, 3figures, references added, introduction and discussion
sections revise
Feasibility study of an Integrated Program for Aerospace vehicle Design (IPAD). Volume 4: IPAD system design
The computing system design of IPAD is described and the requirements which form the basis for the system design are discussed. The system is presented in terms of a functional design description and technical design specifications. The functional design specifications give the detailed description of the system design using top-down structured programming methodology. Human behavioral characteristics, which specify the system design at the user interface, security considerations, and standards for system design, implementation, and maintenance are also part of the technical design specifications. Detailed specifications of the two most common computing system types in use by the major aerospace companies which could support the IPAD system design are presented. The report of a study to investigate migration of IPAD software between the two candidate 3rd generation host computing systems and from these systems to a 4th generation system is included
The classical origin of quantum affine algebra in squashed sigma models
We consider a quantum affine algebra realized in two-dimensional non-linear
sigma models with target space three-dimensional squashed sphere. Its affine
generators are explicitly constructed and the Poisson brackets are computed.
The defining relations of quantum affine algebra in the sense of the Drinfeld
first realization are satisfied at classical level. The relation to the
Drinfeld second realization is also discussed including higher conserved
charges. Finally we comment on a semiclassical limit of quantum affine algebra
at quantum level.Comment: 25 pages, 2 figure
Bistability patterns and nonlinear switching with very high contrast ratio in a 1550 nm quantum dash semiconductor laser
We report on the experimental observation of optical bistability (OB) and nonlinear switching (NS) in a nanostructure laser; specifically a 1550 nm quantum dash Fabry-Perot laser subject to external optical injection and operated in reflection. Different shapes of optical bistability and nonlinear switching, anticlockwise and clockwise, with very high on-off contrast ratio (up to 180:1) between output states were experimentally measured. These results added to the potential of nanostructure lasers for enhanced performance offer promise for use in fast all-optical signal processing applications in optical networks. © 2012 American Institute of Physics
On classical q-deformations of integrable sigma-models
JHEP is an open-access journal funded by SCOAP3 and licensed under CC BY 4.0A procedure is developed for constructing deformations of integrable σ-models which are themselves classically integrable. When applied to the principal chiral model on any compact Lie group F, one recovers the Yang-Baxter σ-model introduced a few years ago by C. Klimčík. In the case of the symmetric space σ-model on F/G we obtain a new one-parameter family of integrable σ-models. The actions of these models correspond to a deformation of the target space geometry and include a torsion term. An interesting feature of the construction is the q-deformation of the symmetry corresponding to left multiplication in the original models, which becomes replaced by a classical q-deformed Poisson-Hopf algebra. Another noteworthy aspect of the deformation in the coset σ-model case is that it interpolates between a compact and a non-compact symmetric space. This is exemplified in the case of the SU(2)/U(1) coset σ-model which interpolates all the way to the SU(1, 1)/U(1) coset σ-modelPeer reviewedFinal Published versio
Classical integrability of Schrodinger sigma models and q-deformed Poincare symmetry
We discuss classical integrable structure of two-dimensional sigma models
which have three-dimensional Schrodinger spacetimes as target spaces. The
Schrodinger spacetimes are regarded as null-like deformations of AdS_3. The
original AdS_3 isometry SL(2,R)_L x SL(2,R)_R is broken to SL(2,R)_L x U(1)_R
due to the deformation. According to this symmetry, there are two descriptions
to describe the classical dynamics of the system, 1) the SL(2,R)_L description
and 2) the enhanced U(1)_R description. In the former 1), we show that the
Yangian symmetry is realized by improving the SL(2,R)_L Noether current. Then a
Lax pair is constructed with the improved current and the classical
integrability is shown by deriving the r/s-matrix algebra. In the latter 2), we
find a non-local current by using a scaling limit of warped AdS_3 and that it
enhances U(1)_R to a q-deformed Poincare algebra. Then another Lax pair is
presented and the corresponding r/s-matrices are also computed. The two
descriptions are equivalent via a non-local map.Comment: 20 pages, no figure, further clarification and references adde
- …