234 research outputs found

    Possible petrogenetic associations among igneous components in North Massif soils: Evidence in 2-4 mm soil particles from 76503

    Get PDF
    Studies of Apollo 17 highland igneous rocks and clasts in breccias from the North and South Massifs have described magnesian troctolite, norite, anorthositic gabbro, dunite, spinel cataclasites, and granulitic lithologies that may have noritic anothosite or anorthositic norite/gabbro as igneous precursors, and have speculated on possible petrogenetic relationships among these rock types. Mineral compositions and relative proportions of plagioclase and plagioclase-olivine particles in samples 76503 indicate that the precursor lithology of those particles were troctolitic anorthosite, not troctolite. Mineral and chemical compositions of more pyroxene-rich, magnesian breccias and granulites in 76503 indicate that their precursor lithology was anorthositic norite/gabbro. The combination of mineral compositions and whole-rock trace-element compositional trends supports a genetic relationship among these two groups as would result from differentiation of a single pluton. Although highland igneous lithologies in Apollo 17 materials have been described previously, the proportions of different igneous lithologies present in the massifs, their frequency of association, and how they are related are not well known. We consider the proportions of, and associations among, the igneous lithologies found in a North Massif soil, which may represent those of the North Massif or a major part of it

    A Monazite-bearing clast in Apollo 17 melt breccia

    Get PDF
    A phosphate-rich clast in a pigeonite-plagioclase mineral assemblage occurs in Apollo 17 impact-melt breccia 76503,7025. The clast, measuring 0.9 x 0.4 mm in thin section, contains 3.3 percent (volume) apatite (Ca5P3O12(F,Cl)), 0.8 percent whitlockite (Ca16(Mg,Fe)2REE2P14O56), and trace monazite ((LREE)PO4). Major minerals include 26 percent pigeonite, En53-57FS34-35W08-13, and 69 percent plagioclase, An84-92Ab7-15Oro.6-1.1. Troilite, ilmenite, and other accessory minerals constitute less than 1 percent of the assemblage and Fe-metal occurs along fractures. Also present in the melt breccia as a separate clast is a fragment of felsite. Based on the association of these clasts and their assemblages, a parent lithology of alkali-anorthositic monzogabbro is postulated. Monazite occurs in the phosphate-bearing clast as two less than 10 micron grains intergrown with whitlockite. The concentration of combined REE oxides in monazite is 63.5 percent and the chondrite-normalized REE pattern is strongly enriched in LREE, similar to lunar monazite in 10047,68 and terrestrial monazite. Thorium concentration was not measured in monazite, but based on oxide analyses of approximately 100 percent (including interpolated values for REE not measured), substantial Th concentration is not indicated, similar to monazite in 10047,68. Measured monazite/whitlockite REE ratios are La: 11, Ce: 8, Sm: 3.6, Y: 0.9, and Yb: 0.5. Compositions of monazite and coexisting whitlockite and apatite are given

    Basin and Crater Ejecta Contributions to the South Pole-Aitken Basin (SPA) Regolith; Positive Implications for Robotic Surface Samples

    Get PDF
    The ability of impacts of all sizes to laterally transport ejected material across the lunar surface is well-documented both in lunar samples [1-4] and in remote sensing data [5-7]. The need to quantify the amount of lateral transport has lead to several models to estimate the scale of this effect. Such models have been used to assess the origin of components at the Apollo sites [8-10] or to predict what might be sampled by robotic landers [11-13]. Here we continue to examine the regolith inside the South Pole-Aitken Basin (SPA) and specifically assess the contribution to the SPA regolith by smaller craters within the basin. Specifically we asses the effects of four larger craters within SPA, Bose, Bhabha, Stoney, and Bellinsgauzen all located within the mafic enhancement in the center of SPA (Figure 1). The region around these craters is of interest as it is a possible landing and sample return site for the proposed Moon-Rise mission [14-17]. Additionally, understanding the provenance of components in the SPA regolith is important for interpreting remotely sensed data of the basin interior [18-20]

    North Massif lithologies and chemical compositions viewed from 2-4 mm particles of soil sample 76503

    Get PDF
    We identify the lithologic and compositional components of soil 76503 based on INAA of 243 2-4-mm particles and 72 thin sections from these and associated 1-2-mm particles (76502). We present a statistical distribution of the major compositional types as the first step of a detailed comparative study of the North and South Massifs. The soil sample was collected well away from any boulder and is more representative of typical North Massif material than any single large rock or boulder sample. So far, our examination of the 76503 particles has provided a better definition of precursor igneous lithologies and their petrogenetic relationships. It has enabled us to refine the nature of mixing components for the North Massif less than 1-mm fines. It has confirmed the differences in lithologies and their proportions between materials of the North and South Massifs; e.g., the North Massif is distinguished by the absence of a 72275-type KREEP component, the abundance of a highly magnesian igneous component, and the absence of certain types of melt compositions found in the South Massif samples

    Workshop on New Views of the Moon: Integrated Remotely Sensed, Geophysical, and Sample Datasets

    Get PDF
    It has been more than 25 years since Apollo 17 returned the last of the Apollo lunar samples. Since then, a vast amount of data has been obtained from the study of rocks and soils from the Apollo and Luna sample collections and, more recently, on a set of about a dozen lunar meteorites collected on Earth. Based on direct studies of the samples, many constraints have been established for the age, early differentiation, crust and mantle structure, and subsequent impact modification of the Moon. In addition, geophysical experiments at the surface, as well as remote sensing from orbit and Earth-based telescopic studies, have provided additional datasets about the Moon that constrain the nature of its surface and internal structure. Some might be tempted to say that we know all there is to know about the Moon and that it is time to move on from this simple satellite to more complex objects. However, the ongoing Lunar Prospector mission and the highly successful Clementine mission have provided important clues to the real geological complexity of the Moon, and have shown us that we still do not yet adequately understand the geologic history of Earth's companion. These missions, like Galileo during its lunar flyby, are providing global information viewed through new kinds of windows, and providing a fresh context for models of lunar origin, evolution, and resources, and perhaps even some grist for new questions and new hypotheses. The probable detection and characterization of water ice at the poles, the extreme concentration of Th and other radioactive elements in the Procellarum-Imbrium-Frigon's resurfaced areas of the nearside of the Moon, and the high-resolution gravity modeling enabled by these missions are examples of the kinds of exciting new results that must be integrated with the extant body of knowledge based on sample studies, in situ experiments, and remote-sensing missions to bring about the best possible understanding of the Moon and its history

    Basin Excavation, Lower Crust, Composition, and Bulk Moon Mass balance in Light of a Thin Crust

    Get PDF
    New lunar gravity results from GRAIL have been interpreted to reflect an overall thin and low-density lunar crust. Accordingly, crustal thickness has been modeled as ranging from 0 to 60 km, with thinnest crust at the locations of Crisium and Moscoviense basins and thickest crust in the central farside highlands. The thin crust has cosmochemical significance, namely in terms of implications for the Moon s bulk composition, especially refractory lithophile elements that are strongly concentrated in the crust. Wieczorek et al. concluded that the bulk Moon need not be enriched compared to Earth in refractory lithophile elements such as Al. Less Al in the crust means less Al has been extracted from the mantle, permitting relatively low bulk lunar mantle Al contents and low pre- and post-crust-extraction values for the mantle (or the upper mantle if only the upper mantle underwent LMO melting). Simple mass-balance calculations using the method of [4] suggests that the same conclusion might hold for Th and the entire suite of refractory lithophile elements that are incompatible in olivine and pyroxene, including the KREEP elements, that are likewise concentrated in the crust

    Lunar Meteorite Queen Alexandra Range 93069 and the Iron Concentration of the Lunar Highlands Surface

    Get PDF
    Lunar meteorite Queen Alexandra Range 93069 is a clast-rich, glassy-matrix regolith breccia of ferroan, highly aluminous bulk composition. It is similar in composition to other feldspathic lunar meteorites but differs in having higher concentrations of siderophile elements and incompatible trace elements. Based on electron microprobe analyses of the fusion crust, glassy matrix, and clasts, and instrumental neutron activation analysis of breccia fragments, QUE 93069 is dominated by nonmare components of ferroan, noritic- anorthosite bulk composition. Thin section QUE 93069,31 also contains a large, impact-melted, partially devitrified clast of magnesian, anorthositic-norite composition. The enrichment in Fe, Sc, and Cr and lower Mg/Fe ratio of lunar meteorites Yamato 791197 and Yamato 82192/3 compared to other feldspathic lunar meteorites can be attributed to a small proportion (5-10%) of low-Ti mare basalt. It is likely that the non- mare components of Yamato 82192/3 are similar to and occur in similar abundance to those of Yamato 86032, with which it is paired. There is a significant difference between the average FeO concentration of the lunar highlands surface as inferred from the feldspathic lunar meteorites (mean: approx. 5.0%; range: 4.3-6.1 %) and a recent estimate based on data from the Clementine mission (3.6%)

    Apollo 16 Evolved Lithology Sodic Ferrogabbro

    Get PDF
    Evolved lunar igneous lithologies, often referred to as the alkali suite, are a minor but important component of the lunar crust. These evolved samples are incompatible-element rich samples, and are, not surprisingly, most common in the Apollo sites in (or near) the incompatible-element rich region of the Moon known as the Procellarum KREEP Terrane (PKT). The most commonly occurring lithologies are granites (A12, A14, A15, A17), monzogabbro (A14, A15), alkali anorthosites (A12, A14), and KREEP basalts (A15, A17). The Feldspathic Highlands Terrane is not entirely devoid of evolved lithologies, and rare clasts of alkali gabbronorite and sodic ferrogabbro (SFG) have been identified in Apollo 16 station 11 breccias 67915 and 67016. Curiously, nearly all pristine evolved lithologies have been found as small clasts or soil particles, exceptions being KREEP basalts 15382/6 and granitic sample 12013 (which is itself a breccia). Here we reexamine the petrography and geochemistry of two SFG-like particles found in a survey of Apollo 16 2-4 mm particles from the Cayley Plains 62283,7-15 and 62243,10-3 (hereafter 7-15 and 10-3 respectively). We will compare these to previously reported SFG samples, including recent analyses on the type specimen of SFG from lunar breccia 67915

    Lunar Meteorites Sayh Al Uhaymir 449 and Dhofar 925, 960, and 961: Windows into South Pole

    Get PDF
    In 2003, three lunar meteorites were collected in close proximity to each other in the Dhofar region of Oman: Dhofar 925 (49 g), Dhofar 960 (35 g), and Dhofar 961 (22 g). In 2006, lunar meteorite Sayh al Uhaymir (SaU) 449 (16.5 g) was found about 100 km to the NE. Despite significant differences in the bulk composition of Dhofar 961 relative to Dhofar 925/960 and SaU 449 (which are identical to each other), these four meteorites are postulated to be paired based on their find locations, bulk composition, and detailed petrographic analysis. Hereafter, they will collectively be referred to as the Dhofar 961 clan. Comparison of meteorite and component bulk compositions to Lunar Prospector 5-degree gamma-ray data suggest the most likely provenance of this meteorite group is within the South Pole-Aitken Basin. As the oldest, largest, and deepest recognizable basin on the Moon, the composition of the material within the SPA basin is of particular importance to lunar science. Here we review and expand upon the geochemistry and petrography of the Dhofar 961 clan and assess the likelihood that these meteorites come from within the SPA basin based on their bulk compositions and the compositions and characteristics of the major lithologic components found within the breccia
    corecore