9,195 research outputs found
Transverse Mass Distribution Characteristics of Production in Pb-induced Reactions and the Combinational Approach
The nature of invariant cross-sections and multiplicities in some
-induced reactions and some important ratio-behaviours of the
invariant multiplicities for various centralities of the collision will here be
dealt with in the light of a combinational approach which has been built up in
the recent past by the present authors. Next, the results would be compared
with the outcome of some of the simulation-based standard models for multiple
production in nuclear collisions at high energies. Finally, the implications of
all this would be discussed.Comment: 14 pages, 14 figures, a few changes have been made in the tex
A note on the time evolution of generalized coherent states
I consider the time evolution of generalized coherent states based on
non-standard fiducial vectors, and show that only for a restricted class of
fiducial vectors does the associated classical motion determine the quantum
evolution of the states. I discuss some consequences of this for path integral
representations.Comment: 9 pages. RevTe
Constrained Dynamics for Quantum Mechanics I. Restricting a Particle to a Surface
We analyze constrained quantum systems where the dynamics do not preserve the
constraints. This is done in particular for the restriction of a quantum
particle in Euclidean n-space to a curved submanifold, and we propose a method
of constraining and dynamics adjustment which produces the right Hamiltonian on
the submanifold when tested on known examples. This method we hope will become
the germ of a full Dirac algorithm for quantum constraints. We take a first
step in generalising it to the situation where the constraint is a general
selfadjoint operator with some additional structures.Comment: 49 pages, TEX, input files amssym.def, amssym.te
On the Groenewold-Van Hove problem for R^{2n}
We discuss the Groenewold-Van Hove problem for R^{2n}, and completely solve
it when n = 1. We rigorously show that there exists an obstruction to
quantizing the Poisson algebra of polynomials on R^{2n}, thereby filling a gap
in Groenewold's original proof without introducing extra hypotheses. Moreover,
when n = 1 we determine the largest Lie subalgebras of polynomials which can be
unambiguously quantized, and explicitly construct all their possible
quantizations.Comment: 15 pages, Latex. Error in the proof of Prop. 3 corrected; minor
rewritin
A study of Jupiter flyby missions Final technical report
Mission planning and spacecraft design concepts for Jupiter flyby missio
Description of isolated macroscopic systems inside quantum mechanics
For an isolated macrosystem classical state parameters are
introduced inside a quantum mechanical treatment. By a suitable mathematical
representation of the actual preparation procedure in the time interval
a statistical operator is constructed as a solution of the Liouville
von Neumann equation, exhibiting at time the state parameters ,
, and {\it preparation parameters} related to times . Relation with Zubarev's non-equilibrium statistical operator is
discussed. A mechanism for memory loss is investigated and time evolution by a
semigroup is obtained for a restricted set of relevant observables, slowly
varying on a suitable time scale.Comment: 13 pages, latex, romp31 style, no figures, to appear in the
Proceedings of the XXXI Symposium on Mathematical Physics (Torun, Poland), to
be published in Rep. Math. Phy
Boxfishes (Teleostei: Ostraciidae) as a model system for fishes swimming with many fins: kinematics
Swimming movements in boxfishes were much more
complex and varied than classical descriptions indicated.
At low to moderate rectilinear swimming speeds
(<5 TL s^(-1), where TL is total body length), they were
entirely median- and paired-fin swimmers, apparently
using their caudal fins for steering. The pectoral and
median paired fins generate both the thrust needed for
forward motion and the continuously varied, interacting
forces required for the maintenance of rectilinearity. It
was only at higher swimming speeds (above 5 TL s^(-1)), when
burst-and-coast swimming was used, that they became
primarily body and caudal-fin swimmers. Despite their
unwieldy appearance and often asynchronous fin beats,
boxfish swam in a stable manner. Swimming boxfish used
three gaits. Fin-beat asymmetry and a relatively nonlinear
swimming trajectory characterized the first gait
(0–1 TL s^(-1)). The beginning of the second gait (1–3 TL s^(-1))
was characterized by varying fin-beat frequencies and
amplitudes as well as synchrony in pectoral fin motions.
The remainder of the second gait (3–5 TL s^(-1)) was
characterized by constant fin-beat amplitudes, varying finbeat
frequencies and increasing pectoral fin-beat
asynchrony. The third gait (>5 TL s^(-1)) was characterized
by the use of a caudal burst-and-coast variant. Adduction
was always faster than abduction in the pectoral fins.
There were no measurable refractory periods between
successive phases of the fin movement cycles. Dorsal and
anal fin movements were synchronized at speeds greater
than 2.5 TL s^(-1), but were often out of phase with pectoral
fin movements
Detection, Properties, and Frequency of Local Calcium Release from the Sarcoplasmic Reticulum in Teleost Cardiomyocytes
Calcium release from the sarcoplasmic reticulum (SR) plays a central role in the regulation of cardiac contraction and rhythm in mammals and humans but its role is controversial in teleosts. Since the zebrafish is an emerging model for studies of cardiovascular function and regeneration we here sought to determine if basic features of SR calcium release are phylogenetically conserved. Confocal calcium imaging was used to detect spontaneous calcium release (calcium sparks and waves) from the SR. Calcium sparks were detected in 16 of 38 trout atrial myocytes and 6 of 15 ventricular cells. The spark amplitude was 1.45±0.03 times the baseline fluorescence and the time to half maximal decay of sparks was 27±3 ms. Spark frequency was 0.88 sparks µm−1 min−1 while calcium waves were 8.5 times less frequent. Inhibition of SR calcium uptake reduced the calcium transient (F/F0) from 1.77±0.17 to 1.12±0.18 (p = 0.002) and abolished calcium sparks and waves. Moreover, elevation of extracellular calcium from 2 to 10 mM promoted early and delayed afterdepolarizations (from 0.6±0.3 min−1 to 8.1±2.0 min−1, p = 0.001), demonstrating the ability of SR calcium release to induce afterdepolarizations in the trout heart. Calcium sparks of similar width and duration were also observed in zebrafish ventricular myocytes. In conclusion, this is the first study to consistently report calcium sparks in teleosts and demonstrate that the basic features of calcium release through the ryanodine receptor are conserved, suggesting that teleost cardiac myocytes is a relevant model to study the functional impact of abnormal SR function
Relaxation properties of the quantum kinetics of carrier-LO-phonon interaction in quantum wells and quantum dots
The time evolution of optically excited carriers in semiconductor quantum
wells and quantum dots is analyzed for their interaction with LO-phonons. Both
the full two-time Green's function formalism and the one-time approximation
provided by the generalized Kadanoff-Baym ansatz are considered, in order to
compare their description of relaxation processes. It is shown that the
two-time quantum kinetics leads to thermalization in all the examined cases,
which is not the case for the one-time approach in the intermediate-coupling
regime, even though it provides convergence to a steady state. The
thermalization criterion used is the Kubo-Martin-Schwinger condition.Comment: 7 pages, 8 figures, accepted for publication in Phys. Rev.
- …