1,490 research outputs found

    Taurus Tunable Filter -- seven years of observing

    Full text link
    The Taurus Tunable Filter (TTF) has now been in regular use for seven years on the Anglo-Australian Telescope. The instrument was also used for three years (1996--1999) on the William Herschel Telescope. We present a brief review of the different applications in order to illustrate the versatility of tunable filters in optical/IR spectrophotometric imaging. Tunable filters are now planned or are under development for 6-10m class telescopes which ensures their use for years to come.Comment: PASA, accepted. 20 pages, 9 figure

    The Taurus Tunable Filter Field Galaxy Survey: Sample Selection and Narrowband Number-Counts

    Get PDF
    Recent evidence suggests a falling volume-averaged star-formation rate (SFR) over z ~ 1. It is not clear, however, the extent to which the selection of such samples influences the measurement of this quantity. Using the Taurus Tunable Filter (TTF) we have obtained an emission-line sample of faint star-forming galaxies over comparable lookback times: the TTF Field Galaxy Survey. By selecting through emission-lines, we are screening galaxies through a quantity that scales directly with star-formation activity for a given choice of initial mass function. The scanning narrowband technique furnishes a galaxy sample that differs from traditional broadband-selected surveys in both its volume-limited nature and selection of galaxies through emission-line flux. Three discrete wavelength intervals are covered, centered at H-alpha redshifts z = 0.08, 0.24 and 0.39. Galaxy characteristics are presented and comparisons made with existing surveys of both broadband and emission-line selection. When the number-counts of emission-line objects are compared with those expected on the basis of existing H-alpha surveys, we find an excess of ~ 3 times at the faintest limits. While these detections are yet to be independently confirmed, inspection of the stronger subsample of galaxies detected in both the line and continuum (line-on-continuum subsample; 13 %) is sufficient to support an excess population. This increase in the emission-line field population implies higher star-formation densities over z ~ 0.4. However, further study in the form of multi-object spectroscopic follow-up is necessary to quantify this and confirm the faintest detections in the sample.Comment: 48 pages, 12 figures. To appear in the Astrophysical Journal. An abridged version of the Abstract is shown her

    An Imaging Fabry-Perot System for the Robert Stobie Spectrograph on the Southern African Large Telescope

    Full text link
    We present the design of the Fabry-Perot system of the Robert Stobie Spectrograph on the 10-meter class Southern African Large Telescope and its characterization as measured in the laboratory. This system provides spectroscopic imaging at any desired wavelength spanning a bandpass 430 - 860 nm, at four different spectral resolving powers ranging from 300 to 9000. Our laboratory tests revealed a wavelength dependence of the etalon gap and parallelism with a maximum variation between 600 - 720 nm that arises because of the complex structure of the broadband multi-layer dielectric coatings. We also report an unanticipated optical effect of this multi-layer coating structure that produces a significant, and wavelength dependent, change in the apparent shape of the etalon plates. This change is caused by two effects: the physical non-uniformities or thickness variations in the coating layers, and the wavelength dependence of the phase change upon refection that can amplify these non-uniformities. We discuss the impact of these coating effects on the resolving power, finesse, and throughput of the system. This Fabry-Perot system will provide a powerful tool for imaging spectroscopy on one of the world's largest telescopes.Comment: 17 pages, 14 figures, accepted for publication in The Astronomical Journa

    Pre-galactic metal enrichment - The chemical signatures of the first stars

    Get PDF
    The emergence of the first sources of light at redshifts of z ~ 10-30 signaled the transition from the simple initial state of the Universe to one of increasing complexity. We review recent progress in our understanding of the formation of the first stars and galaxies, starting with cosmological initial conditions, primordial gas cooling, and subsequent collapse and fragmentation. We emphasize the important open question of how the pristine gas was enriched with heavy chemical elements in the wake of the first supernovae. We conclude by discussing how the chemical abundance patterns conceivably allow us to probe the properties of the first stars and subsequent stellar generations, and allow us to test models of early metal enrichment.Comment: 52 pages, 20 figures, clarifications, references added, accepted for publication in the Reviews of Modern Physic

    Photonic ring resonator filters for astronomical OH suppression

    Full text link
    Ring resonators provide a means of filtering specific wavelengths from a waveguide, and optionally dropping the filtered wavelengths into a second waveguide. Both of these features are potentially useful for astronomical instruments. In this paper we focus on their use as notch filters to remove the signal from atmospheric OH emission lines from astronomical spectra, however we also briefly discuss their use as frequency combs for wavelength calibration and as drop filters for Doppler planet searches. We derive the design requirements for ring resonators for OH suppression from theory and finite difference time domain simulations. We find that rings with small radii (<10 microns) are required to provide an adequate free spectral range, leading to high index contrast materials such as Si and Si3_{3}N4_{4}. Critically coupled rings with high self-coupling coefficients should provide the necessary Q factors, suppression depth, and throughput for efficient OH suppression. We report on our progress in fabricating both Si and Si3_{3}N4_{4} rings for OH suppression, and give results from preliminary laboratory tests. Our early devices show good control over the free spectral range and wavelength separation of multi-ring devices. The self-coupling coefficients are high (>0.9), but further optimisation is required to achieve higher Q and deeper notches, with current devices having Q4000Q \approx 4000 and 10\approx 10 dB suppression. The overall prospects for the use of ring resonators in astronomical instruments is promising, provided efficient fibre-chip coupling can be achieved.Comment: Submitted to Optics Express feature issue on Recent Advances in Astrophotonics (27 pages, 20 figs

    Discovery of a 500 pc shell in the nucleus of Centaurus A

    Full text link
    Spitzer Space Telescope mid-infrared images of the radio galaxy Centaurus A reveal a shell-like, bipolar, structure 500 pc to the north and south of the nucleus. This shell is seen in 5.8, 8.0 and 24 micron broad-band images. Such a remarkable shell has not been previously detected in a radio galaxy and is the first extragalactic nuclear shell detected at mid-infrared wavelengths. We estimate that the shell is a few million years old and has a mass of order million solar masses. A conservative estimate for the mechanical energy in the wind driven bubble is 10^53 erg. The shell could have created by a small few thousand solar mass nuclear burst of star formation. Alternatively, the bolometric luminosity of the active nucleus is sufficiently large that it could power the shell. Constraints on the shell's velocity are lacking. However, if the shell is moving at 1000 km/s then the required mechanical energy would be 100 times larger.Comment: submitted to ApJ Letter

    Detection and Measurement from Narrowband Tunable Filter Scans

    Get PDF
    The past five years have seen a rapid rise in the use of tunable filters in many diverse fields of astronomy, through Taurus Tunable Filter (TTF) instruments at the Anglo-Australian and William Herschel Telescopes. Over this time we have continually refined aspects of operation and developed a collection of special techniques to handle the data produced by these novel imaging instruments. In this paper, we review calibration procedures and summarize the theoretical basis for Fabry-Perot photometry that is central to effective tunable imaging. Specific mention is made of object detection and classification from deep narrowband surveys containing several hundred objects per field. We also discuss methods for recognizing and dealing with artefacts (scattered light, atmospheric effects, etc.) which can seriously compromise the photometric integrity of the data if left untreated. Attention is paid to the different families of ghost reflections encountered, and strategies to minimise their presence. In our closing remarks, future directions for tunable imaging are outlined and contrasted with the Fabry-Perot technology employed in the current generation of tunable imagers

    Strict Limits on the Ionizing Luminosity in NGC 1068 from Jet-axis Molecular Clouds

    Get PDF
    The radio jet axis of NGC 1068 is characterised by energetic activity from x-ray to radio wavelengths. Detailed kinematic and polarization studies have shown that this activity is confined to bipolar cones centered on the AGN which intersect the plane of the disk. Thus, molecular clouds at 1 kpc distance along this axis are an important probe of the nuclear ionizing luminosity and spectrum. Extended MIR emission coincident with the clouds is reasonably understood by dust heated to high temperatures by the nuclear radiation field. This model predicts that the nuclear spectrum is quasar-like (power law + blue excess) with a luminosity 2-5 times higher than inferred by Pier et al. Consequently, there is little or no polyaromatic hydrocarbon (PAH) emission associated with the radio-axis molecular clouds. We review this model in the light of new observations. A multi-waveband collage is included to illustrate the possible orientations of the double cones to our line of sight and the galaxian plane
    corecore