381 research outputs found

    Comparative host specificity of human- and pig- associated Staphylococcus aureus clonal lineages.

    Get PDF
    Bacterial adhesion is a crucial step in colonization of the skin. In this study, we investigated the differential adherence to human and pig corneocytes of six Staphylococcus aureus strains belonging to three human-associated [ST8 (CC8), ST22 (CC22) and ST36(CC30)] and two pig-associated [ST398 (CC398) and ST433(CC30)] clonal lineages, and their colonization potential in the pig host was assessed by in vivo competition experiments. Corneocytes were collected from 11 humans and 21 pigs using D-squame® adhesive discs, and bacterial adherence to corneocytes was quantified by a standardized light microscopy assay. A previously described porcine colonization model was used to assess the potential of the six strains to colonize the pig host. Three pregnant, S. aureus-free sows were inoculated intravaginally shortly before farrowing with different strain mixes [mix 1) human and porcine ST398; mix 2) human ST36 and porcine ST433; and mix 3) human ST8, ST22, ST36 and porcine ST398] and the ability of individual strains to colonize the nasal cavity of newborn piglets was evaluated for 28 days after birth by strain-specific antibiotic selective culture. In the corneocyte assay, the pig-associated ST433 strain and the human-associated ST22 and ST36 strains showed significantly greater adhesion to porcine and human corneocytes, respectively (p<0.0001). In contrast, ST8 and ST398 did not display preferential host binding patterns. In the in vivo competition experiment, ST8 was a better colonizer compared to ST22, ST36, and ST433 prevailed over ST36 in colonizing the newborn piglets. These results are partly in agreement with previous genetic and epidemiological studies indicating the host specificity of ST22, ST36 and ST433 and the broad-host range of ST398. However, our in vitro and in vivo experiments revealed an unexpected ability of ST8 to adhere to porcine corneocytes and persist in the nasal cavity of pigs

    Cephem Potentiation by Inactivation of Nonessential Genes Involved in Cell Wall Biogenesis of ß-Lactamase-Producing Escherichia coli

    Get PDF
    Reversal of antimicrobial resistance is an appealing and largely unexplored strategy in drug discovery. The objective of this study was to identify potential targets for “helper” drugs reversing cephem resistance in Escherichia coli strains producing β-lactamases. A CMY-2-encoding plasmid was transferred by conjugation to seven isogenic deletion mutants exhibiting cephem hypersusceptibility. The effect of each mutation was evaluated by comparing the MICs in the wild type and the mutant harboring the same plasmid. Mutation of two genes encoding proteins involved in cell wall biosynthesis, dapF and mrcB, restored susceptibility to cefoxitin (FOX) and reduced the MICs of cefotaxime and ceftazidime, respectively, from the resistant to the intermediate category according to clinical breakpoints. The same mutants harboring a CTX-M-1-encoding plasmid fell into the intermediate or susceptible category for all three drugs. Individual deletion of dapF and mrcB in a clinical isolate of CTX-M-15-producing E. coli sequence type 131 (ST131) resulted in partial reversal of ceftazidime and cefepime resistance but did not reduce MICs below susceptibility breakpoints. Growth curve analysis indicated no fitness cost in a ΔmrcB mutant, whereas a ΔdapF mutant had a 3-fold longer lag phase than the wild type, suggesting that drugs targeting DapF may display antimicrobial activity, in addition to synergizing with selected cephems. DapF appeared to be a potential FOX helper drug target candidate, since dapF inactivation resulted in synergistic potentiation of FOX in the genetic backgrounds tested. The study showed that individual inactivation of two nonessential genes involved in cell wall biogenesis potentiates cephem activity according to drug- and strain-specific patterns

    Evidence for the evolutionary steps leading to mecA-mediated ß-lactam resistance in staphylococci

    Get PDF
    The epidemiologically most important mechanism of antibiotic resistance in Staphylococcus aureus is associated with mecA–an acquired gene encoding an extra penicillin-binding protein (PBP2a) with low affinity to virtually all β-lactams. The introduction of mecA into the S. aureus chromosome has led to the emergence of methicillin-resistant S. aureus (MRSA) pandemics, responsible for high rates of mortality worldwide. Nonetheless, little is known regarding the origin and evolution of mecA. Different mecA homologues have been identified in species belonging to the Staphylococcus sciuri group representing the most primitive staphylococci. In this study we aimed to identify evolutionary steps linking these mecA precursors to the β-lactam resistance gene mecA and the resistance phenotype. We sequenced genomes of 106 S. sciuri, S. vitulinus and S. fleurettii strains and determined their oxacillin susceptibility profiles. Single-nucleotide polymorphism (SNP) analysis of the core genome was performed to assess the genetic relatedness of the isolates. Phylogenetic analysis of the mecA gene homologues and promoters was achieved through nucleotide/amino acid sequence alignments and mutation rates were estimated using a Bayesian analysis. Furthermore, the predicted structure of mecA homologue-encoded PBPs of oxacillin-susceptible and -resistant strains were compared. We showed for the first time that oxacillin resistance in the S. sciuri group has emerged multiple times and by a variety of different mechanisms. Development of resistance occurred through several steps including structural diversification of the non-binding domain of native PBPs; changes in the promoters of mecA homologues; acquisition of SCCmec and adaptation of the bacterial genetic background. Moreover, our results suggest that it was exposure to β-lactams in human-created environments that has driven evolution of native PBPs towards a resistance determinant. The evolution of β-lactam resistance in staphylococci highlights the numerous resources available to bacteria to adapt to the selective pressure of antibiotics

    Exploring the behavioural drivers of veterinary surgeon antibiotic prescribing: a qualitative study of companion animal veterinary surgeons in the UK

    Get PDF
    Background: Multi-drug resistant bacteria are an increasing concern in both human and veterinary medicine. Inappropriate prescribing and use of antibiotics within veterinary medicine may be a contributory factor to antimicrobial resistance (AMR). The ‘One Health’ Initiative aims to work across species and environments to reduce AMR, however; little is currently known about the factors which influence antibiotic prescribing among veterinary surgeons in companion animal practice. This paper reports on qualitative data analysis of interviews with veterinary surgeons whose practice partially or wholly focuses on companion animals (N = 16). The objective of the research was to explore the drivers of companion animal veterinary surgeons’ antibiotic prescribing behaviours. The veterinary surgeons interviewed were all practising within the UK (England (n = 4), Scotland (n = 11), Northern Ireland (n = 1)). A behavioural thematic analysis of the data was undertaken, which identified barriers and facilitators to specific prescribing-related behaviours. Results: Five components of prescribing behaviours were identified: 1) confirming clinical need for antibiotics; 2) responding to clients; 3) confirming diagnosis; 4) determining dose, duration and type of antibiotic; and 5) preventing infection around surgery (with attendant appropriate and inappropriate antibiotic prescribing behaviours). Barriers to appropriate prescribing identified include: business, diagnostic, fear, habitual practice and pharmaceutical factors. Facilitators include: AMR awareness, infection prevention, professional learning and regulation and government factors. Conclusion: This paper uses a behavioural lens to examine drivers which are an influence on veterinary surgeons’ prescribing behaviours. The paper contributes new understandings about factors which influence antibiotic prescribing behaviours among companion animal veterinary surgeons. This analysis provides evidence to inform future interventions, which are focused on changing prescribing behaviours, in order to address the pressing public health concern of AMR

    Evaluation of Veterinary-Specific Interpretive Criteria for Susceptibility Testing of Streptococcus equi Subspecies with Trimethoprim-Sulfamethoxazole and Trimethoprim-Sulfadiazine

    No full text
    Antimicrobial susceptibility test results for trimethoprim-sulfadiazine with Streptococcus equi subspecies are interpreted based on human data for trimethoprim-sulfamethoxazole. The veterinary-specific data generated in this study support a single breakpoint for testing trimethoprim-sulfamethoxazole and/or trimethoprim-sulfadiazine with S. equi. This study indicates trimethoprim-sulfamethoxazole as an acceptable surrogate for trimethoprim-sulfadiazine with S. equi

    Evaluating synergy between marbofloxacin and gentamicin in Pseudomonas aeruginosa strains isolated from dogs with otitis externa

    Get PDF
    The aim of this study was to determine antimicrobial susceptibility of Pseudomonas aeruginosa strains to marbofloxacin and gentamicin, and investigate the possible synergistic, additive, indifferent or antagonistic effects between the two agents. P. aeruginosa strains can develop resistance quickly against certain antibiotics if used alone, thus the need emerges to find synergistic combinations. A total of 68 P. aeruginosa strains isolated from dogs were examined. In order to describe interactions between marbofloxacin and gentamicin the checkerboard microdilution method was utilized. The MICs (minimum inhibitory concentrations) for marbofloxacin and gentamicin were in the range 0.25–64 mg/L and 0.25–32 mg/L, respectively. The combination of marbofloxacin and gentamicin was more effective with a MIC range of 0.031–8 mg/L and a MIC90 of 1 mg/L, compared to 16 mg/L for marbofloxacin alone and 8 mg/L for gentamicin alone. The FIC (fractional inhibitory concentration) indices ranged from 0.0945 (pronounced synergy) to 1.0625 (indifference). Synergy between marbofloxacin and gentamicin was found in 33 isolates. The mean FIC index is 0.546, which represents a partial synergistic/additive effect close to the full synergy threshold. In vitro results indicate that marbofloxacin and gentamicin as partially synergistic agents may prove clinically useful in combination therapy against P. aeruginosa infections. Although marbofloxacin is not used in the human practice, the interactions between fluoroquinolones and aminoglycosides may have importance outside the veterinary field

    QUINOLONE- AND ETA-LACTAM- RESISTANCE IN Escherichia coli FROM DANISH AND ITALIAN BROILER FLOCKS

    Get PDF
    The prevalence of quinolone- and -lactam-resistant E. coli was investigated among healthy broiler flocks in Denmark and Italy. In Denmark, sock samples were collected from 10 parent flocks and 10 offspring flocks, according to the procedure currently used for the surveillance of Salmonella in the EU. Samples were enriched in McConkey broth and streaked on McConkey agar plates added with nalidixic acid (32 g/ml), ciprofloxacin (2 g/ml), ampicillin (32 g/ml), cefotaxime (2 g/ml) or ceftiofur (8 g/ml). The -glucuronidase test was performed for verification of presumptive E. coli. The same methods were used to analyse sock samples collected from 6 Italian broiler flocks. PCR with primers for the CTX-M-type extended-spectrum -lactamases (ESBLs) was performed on cephalosporin-resistant isolates. While resistance to ampicillin and nalidixic acid was widespread in both countries, resistance to ciprofloxacin and cephalosporins was more common among Italian flocks. In Denmark, ciprofloxacin resistance was only detected in 1 parent flock without any history of quinolone usage and none of the flocks was positive for cephalosporin-resistant E. coli. In Italy, resistance to ciprofloxacin was detected in all flocks and resistance to ceftiofur and cefotaxime were detected in 5 flocks. Primers specific for the CTX-M-type ESBLs generated PCR amplicons from isolates from 3 of these flocks. In industrialized countries, the poultry production system is highly standardized, and therefore comparable. However, the use of broad-spectrum antimicrobials is particularly limited in Danish poultry production. Accordingly, the results of this study could reflect the different policies in antimicrobial usage between the two countries
    corecore