82 research outputs found
Two years of flight of the Pamela experiment: results and perspectives
PAMELA is a satellite borne experiment designed to study with great accuracy
cosmic rays of galactic, solar, and trapped nature in a wide energy range
(protons: 80 MeV-700 GeV, electrons 50 MeV-400 GeV). Main objective is the
study of the antimatter component: antiprotons (80 MeV-190 GeV), positrons (50
MeV-270 GeV) and search for antinuclei with a precision of the order of
). The experiment, housed on board the Russian Resurs-DK1 satellite,
was launched on June, 2006 in a orbit with an
inclination of 70 degrees. In this work we describe the scientific objectives
and the performance of PAMELA in its first two years of operation. Data on
protons of trapped, secondary and galactic nature - as well as measurements of
the December 2006 Solar Particle Event - are also provided.Comment: To appear on J. Phys. Soc. Jpn. as part of the proceedings of the
International Workshop on Advances in Cosmic Ray Science March, 17-19, 2008
Waseda University, Shinjuku, Tokyo, Japa
PAMELA results on the cosmic-ray antiproton flux from 60 MeV to 180 GeV in kinetic energy
The satellite-borne experiment PAMELA has been used to make a new measurement
of the cosmic-ray antiproton flux and the antiproton-to-proton flux ratio which
extends previously published measurements down to 60 MeV and up to 180 GeV in
kinetic energy. During 850 days of data acquisition approximately 1500
antiprotons were observed. The measurements are consistent with purely
secondary production of antiprotons in the galaxy. More precise secondary
production models are required for a complete interpretation of the results.Comment: 11 pages, 3 figures, 1 table. Accepted for publication in Physical
Review Letter
A new measurement of the antiproton-to-proton flux ratio up to 100 GeV in the cosmic radiation
A new measurement of the cosmic ray antiproton-to-proton flux ratio between 1
and 100 GeV is presented. The results were obtained with the PAMELA experiment,
which was launched into low-earth orbit on-board the Resurs-DK1 satellite on
June 15th 2006. During 500 days of data collection a total of about 1000
antiprotons have been identified, including 100 above an energy of 20 GeV. The
high-energy results are a ten-fold improvement in statistics with respect to
all previously published data. The data follow the trend expected from
secondary production calculations and significantly constrain contributions
from exotic sources, e.g. dark matter particle annihilations.Comment: 10 pages, 4 figures, 1 tabl
PAMELA Measurements of Cosmic-ray Proton and Helium Spectra
Protons and helium nuclei are the most abundant components of the cosmic
radiation. Precise measurements of their fluxes are needed to understand the
acceleration and subsequent propagation of cosmic rays in the Galaxy. We report
precision measurements of the proton and helium spectra in the rigidity range 1
GV-1.2 TV performed by the satellite-borne experiment PAMELA. We find that the
spectral shapes of these two species are different and cannot be well described
by a single power law. These data challenge the current paradigm of cosmic-ray
acceleration in supernova remnants followed by diffusive propagation in the
Galaxy. More complex processes of acceleration and propagation of cosmic rays
are required to explain the spectral structures observed in our data.Comment: 13 pages, 4 figures, link to SOM (with tables) in the references.
This manuscript has been accepted for publication in Science. This version
has not undergone final editing. Please refer to the complete version of
record at http://www.sciencemag.org/ [www.sciencemag.org
The cosmic-ray electron flux measured by the PAMELA experiment between 1 and 625 GeV
Precision measurements of the electron component in the cosmic radiation
provide important information about the origin and propagation of cosmic rays
in the Galaxy. Here we present new results regarding negatively charged
electrons between 1 and 625 GeV performed by the satellite-borne experiment
PAMELA. This is the first time that cosmic-ray electrons have been identified
above 50 GeV. The electron spectrum can be described with a single power law
energy dependence with spectral index -3.18 +- 0.05 above the energy region
influenced by the solar wind (> 30 GeV). No significant spectral features are
observed and the data can be interpreted in terms of conventional diffusive
propagation models. However, the data are also consistent with models including
new cosmic-ray sources that could explain the rise in the positron fraction.Comment: 11 pages, 3 figures, accepted for publication in PR
Observations of the December 13 and 14, 2006, Solar Particle Events in the 80 MeV/n - 3 GeV/n range from space with PAMELA detector
We present the space spectrometer PAMELA observations of proton and helium
fluxes during the December 13 and 14, 2006 solar particle events. This is the
first direct measurement of the solar energetic particles in space with a
single instrument in the energy range from 80 MeV/n up to 3
GeV/n. In the event of December 13 measured energy spectra of solar protons and
helium were compared with results obtained by neutron monitors and other
detectors. Our measurements show a spectral behaviour different from those
derived from the neutron monitor network. No satisfactory analytical fitting
was found for the energy spectra. During the first hours of the December 13
event solar energetic particles spectra were close to the exponential form
demonstrating rather significant temporal evolution. Solar He with energy up to
~1 GeV/n was recorded on December 13. In the event of December 14 energy of
solar protons reached ~600 MeV whereas maximum energy of He was below 100
MeV/n. The spectra were slightly bended in the lower energy range and preserved
their form during the second event. Difference in the particle flux appearance
and temporal evolution in these two events may argue for a special conditions
leading to acceleration of solar particles up to relativistic energies.Comment: Accepted for publication on Astrophysical journa
Time dependence of the proton flux measured by PAMELA during the July 2006 - December 2009 solar minimum
The energy spectra of galactic cosmic rays carry fundamental information
regarding their origin and propagation. These spectra, when measured near
Earth, are significantly affected by the solar magnetic field. A comprehensive
description of the cosmic radiation must therefore include the transport and
modulation of cosmic rays inside the heliosphere. During the end of the last
decade the Sun underwent a peculiarly long quiet phase well suited to study
modulation processes. In this paper we present proton spectra measured from
July 2006 to December 2009 by PAMELA. The large collected statistics of protons
allowed the time variation to be followed on a nearly monthly basis down to 400
MV. Data are compared with a state-of-the-art three-dimensional model of solar
modulation.Comment: 17 pages, 5 figures, 1 table, to appear in Astrophysical Journal.
Corrected two elements of Table
PRECISE COSMIC RAYS MEASUREMENTS WITH PAMELA
The PAMELA experiment was launched on board the Resurs-DK1 satellite on June 15th 2006. The apparatus was designed to conduct precision studies of charged cosmic radiation over a wide energy range, from tens of MeV up to several hundred GeV, with unprecedented statistics. In five years of continuous data taking in space, PAMELA accurately measured the energy spectra of cosmic ray antiprotons and positrons, as well as protons, electrons and light nuclei, sometimes providing data in unexplored energetic regions. These important results have shed new light in several astrophysical fields like: an indirect search for Dark Matter, a search for cosmological antimatter (anti-Helium), and the validation of acceleration, transport and secondary production models of cosmic rays in the Galaxy. Some of the most important items of Solar and Magnetospheric physics were also investigated. Here we present the most recent results obtained by the PAMELA experiment
- …