5,593 research outputs found

    Marine resources and ocean surveys

    Get PDF
    Application of ERTS-1 remotely sensed multispectral imagery to marine resources and oceanic observations and surveys - Conferenc

    Synthesis, screening, and sequencing of cysteine-rich one-bead one-compound peptide libraries.

    Get PDF
    Cysteine-rich peptides are valued as tags for biarsenical fluorophores and as environmentally important reagents for binding toxic heavy metals. Due to the inherent difficulties created by cysteine, the power of one-bead one-compound (OBOC) libraries has never been applied to the discovery of short cysteine-rich peptides. We have developed the first method for the synthesis, screening, and sequencing of cysteine-rich OBOC peptide libraries. First, we synthesized a heavily biased cysteine-rich OBOC library, incorporating 50% cysteine at each position (Ac-X8-KM-TentaGel). Then, we developed conditions for cysteine alkylation, cyanogen bromide cleavage, and direct MS/MS sequencing of that library at the single bead level. The sequencing efficiency of this library was comparable to a traditional cysteine-free library. To validate screening of cysteine-rich OBOC libraries, we reacted a library with the biarsenical FlAsH and identified beads bearing the known biarsenical-binding motif (CCXXCC). These results enable OBOC libraries to be used in high-throughput discovery of cysteine-rich peptides for protein tagging, environmental remediation of metal contaminants, or cysteine-rich pharmaceuticals

    Absence of magnetic long range order in Y2_{2}CrSbO7_{7}: bond-disorder induced magnetic frustration in a ferromagnetic pyrochlore

    Get PDF
    The consequences of nonmagnetic-ion dilution for the pyrochlore family Y2_{2}(M1xNxM_{1-x}N_{x})2_{2}O7_{7} (MM = magnetic ion, NN = nonmagnetic ion) have been investigated. As a first step, we experimentally examine the magnetic properties of Y2_{2}CrSbO7_{7} (xx = 0.5), in which the magnetic sites (Cr3+^{3+}) are percolative. Although the effective Cr-Cr spin exchange is ferromagnetic, as evidenced by a positive Curie-Weiss temperature, ΘCW\Theta_\mathrm{{CW}} = 20.1(6) K, our high-resolution neutron powder diffraction measurements detect no sign of magnetic long range order down to 2 K. In order to understand our observations, we performed numerical simulations to study the bond-disorder introduced by the ionic size mismatch between MM and NN. Based on these simulations, bond-disorder (xbx_{b} \simeq 0.23) percolates well ahead of site-disorder (xsx_{s} \simeq 0.61). This model successfully reproduces the critical region (0.2 < xx < 0.25) for the N\'eel to spin glass phase transition in Zn(Cr1x_{1-x}Gax_{x})2_{2}O4_{4}, where the Cr/Ga-sublattice forms the same corner-sharing tetrahedral network as the M/NM/N-sublattice in Y2_{2}(M1xNxM_{1-x}N_{x})2_{2}O7_{7}, and the rapid drop in magnetically ordered moment in the N\'eel phase [Lee etet alal, Phys. Rev. B 77, 014405 (2008)]. Our study stresses the nonnegligible role of bond-disorder on magnetic frustration, even in ferromagnets

    Ground-based detection of a cloud of methanol from Enceladus: When is a biomarker not a biomarker?

    Get PDF
    Saturn's moon Enceladus has vents emerging from a sub-surface ocean, offering unique probes into the liquid environment. These vents drain into the larger neutral torus in orbit around Saturn. We present a methanol (CH3OH) detection observed with IRAM 30-m from 2008 along the line-of-sight through Saturn's E-ring. Additionally, we also present supporting observations from the Herschel public archive of water (ortho-H2O; 1669.9 GHz) from 2012 at a similar elongation and line-of-sight. The CH3OH 5(1,1)-4(1,1) transition was detected at 5.9 sigma confidence. The line has 0.43 km/s width and is offset by +8.1 km/s in the moon's reference frame. Radiative transfer models allow for gas cloud dimensions from 1750 km up to the telescope beam diameter ~73000 km. Taking into account the CH3OH lifetime against solar photodissociation and the redshifted line velocity, there are two possible explanations for the CH3OH emission: methanol is primarily a secondary product of chemical interactions within the neutral torus that (1) spreads outward throughout the E-ring or (2) originates from a compact, confined gas cloud lagging Enceladus by several km/s. We find either scenario to be consistent with significant redshifted H2O emission (4 sigma) measured from the Herschel public archive. The measured CH3OH:H2O abundance (> 0.5 per cent) significantly exceeds the observed abundance in the direct vicinity of the vents (~0.01 per cent), suggesting CH3OH is likely chemically processed within the gas cloud with methane (CH4) as its parent species.Comment: 16 pages, 4 figures, accepted for publication in the International Journal of Astrobiology (IJA

    Forming the first planetary systems: debris around Galactic thick disc stars

    Get PDF
    The thick disc contains stars formed within the first Gyr of Galactic history, and little is known about their planetary systems. The Spitzer MIPS instrument was used to search 11 of the closest of these old low-metal stars for circumstellar debris, as a signpost that bodies at least as large as planetesimals were formed. A total of 22 thick disc stars has now been observed, after including archival data, but dust is not found in any of the systems. The data rule out a high incidence of debris among star systems from early in the Galaxy's formation. However, some stars of this very old population do host giant planets, at possibly more than the general incidence among low-metal Sun-like stars. As the Solar System contains gas giants but little cometary dust, the thick disc could host analogue systems that formed many Gyr before the Sun.Comment: accepted by MNRAS Letters; 5 pages, 4 figure

    A Spectral Line Survey from 138.3 to 150.7 GHZ toward Orion-KL

    Full text link
    We present the results of a spectral line survey from 138.3 to 150.7 GHz toward Orion-KL. The observations were made using the 14 m radio telescope of Taeduk Radio Astronomy Observatory. Typical system temperatures were between 500 and 700 K, with the sensitivity between 0.020.060.02 - 0.06 K in units of TA\rm T_A^*. A total of 149 line spectra are detected in this survey. Fifty lines have been previously reported, however we find 99 new detections. Among these new lines, 32 are `unidentified', while 67 are from molecular transitions with known identifications. There is no detection of H or He recombination lines. The identified spectra are from a total of 16 molecular species and their isotopic variants. In the range from 138.3 to 150.7 GHz, the strongest spectral line is the J=3-2 transition of CS molecule, followed by transitions of the H2CO\rm H_2CO, CH3OH\rm CH_3OH, CH3CN\rm CH_3CN, and SO2\rm SO_2. Spectral lines from the large organic molecules such as CH3OH\rm CH_3OH, CH3OCH3\rm CH_3OCH_3, HCOOCH3\rm HCOOCH_3, C2H5CN\rm C_2H_5CN and CH3CN\rm CH_3CN are prominent; with 80 % of the identified lines arising from transitions of these molecules. The rotational temperatures and column densities are derived using the standard rotation diagram analysis for CH3OH\rm CH_3OH (13CH3OH\rm ^{13}CH_3OH), HCOOCH3\rm HCOOCH_3, CH3CN\rm CH_3CN and SO2\rm SO_2 with 10270K\rm 10\sim 270 K and 0.220×1015cm2\rm 0.2\sim 20\times 10^{15} cm^{-2}. These estimates are fairly comparable to the values for the same molecule in other frequency regions by other studies.Comment: 10 figures, 2 tex files for a manuscript and tables, accepted to Ap

    Very High Angular Resolution Science with the Square Kilometre Array

    Get PDF
    Preliminary specifications for the Square Kilometre Array (SKA) call for 25% of the total collecting area of the dish array to be located at distances greater than 180 km from the core, with a maximum baseline of at least 3000 km. The array will provide angular resolution ~ 40 - 2 mas at 0.5 - 10 GHz with image sensitivity reaching < 50 nJy/beam in an 8 hour integration with 500 MHz bandwidth. Given these specifications, the high angular resolution component of the SKA will be capable of detecting brightness temperatures < 200 K with milliarcsecond-scale angular resolution. The aim of this article is to bring together in one place a discussion of the broad range of new and important high angular resolution science that will be enabled by the SKA, and in doing so, address the merits of long baselines as part of the SKA. We highlight the fact that high angular resolution requiring baselines greater than 1000 km provides a rich science case with projects from many areas of astrophysics, including important contributions to key SKA science.Comment: 13 pages, 6 figure
    corecore