410 research outputs found
Charge-Transfer Excitations in the Model Superconductor HgBaCuO
We report a Cu -edge resonant inelastic x-ray scattering (RIXS) study of
charge-transfer excitations in the 2-8 eV range in the structurally simple
compound HgBaCuO at optimal doping ( K).
The spectra exhibit a significant dependence on the incident photon energy
which we carefully utilize to resolve a multiplet of weakly-dispersive ( eV) electron-hole excitations, including a mode at 2 eV. The observation
of this 2 eV excitation suggests the existence of a charge-transfer pseudogap
deep in the superconducting phase. Quite generally, our data demonstrate the
importance of exploring the incident photon energy dependence of the RIXS cross
section.Comment: 5 pages, 3 figure
Observation of a 500meV Collective Mode in LaSrCuO and NdCuO
Utilizing resonant inelastic x-ray scattering, we report a previously
unobserved mode in the excitation spectrum of LaSrCuO at 500
meV. The mode is peaked around the (,0) point in reciprocal space and is
observed to soften, and broaden, away from this point. Samples with x=0, 0.01,
0.05, and 0.17 were studied. The new mode is found to be rapidly suppressed
with increasing Sr content and is absent at =0.17, where it is replaced by a
continuum of excitations. The peak is only observed when the incident x-ray
polarization is normal to the CuO planes and is also present in NdCuO.
We suggest possible explanations for this excitation.Comment: 5 pages, 5 figure
Resonant inelastic x-ray scattering study of holon-antiholon continuum in SrCuO2
We report a resonant inelastic x-ray scattering study of charge excitations
in the quasi-one-dimensional Mott insulator SrCuO2. We observe a continuum of
low-energy excitations, in which a highly dispersive feature with a large
sinusoidal dispersion (~1.1 eV) resides. We have also measured the optical
conductivity, and studied the dynamic response of the extended Hubbard model
with realistic parameters, using a dynamical density-matrix renormalization
group method. In contrast to earlier work, we do not find a long-lived exciton,
but rather these results suggest that the excitation spectrum comprises a
holon-antiholon continuum together with a broad resonance.Comment: Final version to be published in Phys. Rev. Let
Holographic analysis of diffraction structure factors
We combine the theory of inside-source/inside-detector x-ray fluorescence
holography and Kossel lines/x ray standing waves in kinematic approximation to
directly obtain the phases of the diffraction structure factors. The influence
of Kossel lines and standing waves on holography is also discussed. We obtain
partial phase determination from experimental data obtaining the sign of the
real part of the structure factor for several reciprocal lattice vectors of a
vanadium crystal.Comment: 4 pages, 3 figures, submitte
Testing After Worked Example Study Does Not Enhance Delayed Problem-Solving Performance Compared to Restudy
Four experiments investigated whether the testing effect also applies to the acquisition of problem-solving skills from worked examples. Experiment 1 (n = 120) showed no beneficial effects of testing consisting of isomorphic problem solving or example recall on final test performance, which consisted of isomorphic problem solving, compared to continued study of isomorphic examples. Experiment 2 (n = 124) showed no beneficial effects of testing consisting of identical problem solving compared to restudying an identical example. Interestingly, participants who took both an immediate and a delayed final test outperformed those taking only a delayed test. This finding suggested that testing might become beneficial for retention but only after a certain level of schema acquisition has taken place through restudying several examples. However, experiment 2 had no control condition restudying examples instead of taking the immediate test. Experiment 3 (n = 129) included such a restudy condition, and there was no evidence that testing after studying four examples was more effective for final delayed test performance than restudying, regardless of whether restudied/tested problems were isomorphic or identical. Experiment 4 (n = 75) used a similar design as experiment 3 (i.e., testing/restudy after four examples), but with examples on a different topic and with a different participant population. Again, no evidence of a testing effect was found. Thus, across four experiments, with different types of initial tests, different problem-solving domains, and different participant populations, we found no evidence that testing enhanced delayed test performance compared to restudy. These findings suggest that the testing effect might not apply to acquiring problem-solving skills from worked examples
An asymptotic form of the reciprocity theorem with applications in x-ray scattering
The emission of electromagnetic waves from a source within or near a
non-trivial medium (with or without boundaries, crystalline or amorphous, with
inhomogeneities, absorption and so on) is sometimes studied using the
reciprocity principle. This is a variation of the method of Green's functions.
If one is only interested in the asymptotic radiation fields the generality of
these methods may actually be a shortcoming: obtaining expressions valid for
the uninteresting near fields is not just a wasted effort but may be
prohibitively difficult. In this work we obtain a modified form the reciprocity
principle which gives the asymptotic radiation field directly. The method may
be used to obtain the radiation from a prescribed source, and also to study
scattering problems. To illustrate the power of the method we study a few
pedagogical examples and then, as a more challenging application we tackle two
related problems. We calculate the specular reflection of x rays by a rough
surface and by a smoothly graded surface taking polarization effects into
account. In conventional treatments of reflection x rays are treated as scalar
waves, polarization effects are neglected. This is a good approximation at
grazing incidence but becomes increasingly questionable for soft x rays and UV
at higher incidence angles.
PACs: 61.10.Dp, 61.10.Kw, 03.50.DeComment: 19 pages, 4 figure
Testing After Worked Example Study Does Not Enhance Delayed Problem-Solving Performance Compared to Restudy
Four experiments investigated whether the testing effect also applies to the acquisition of problem-solving skills from worked examples. Experiment 1 (n = 120) showed no beneficial effects of testing consisting of isomorphic problem solving or example recall on final test performance, which consisted of isomorphic problem solving, compared to continued study of isomorphic examples. Experiment 2 (n = 124) showed no beneficial effects of testing consisting of identical problem solving compared to restudying an identical example. Interestingly, participants who took both an immediate and a delayed final test outperformed those taking only a delayed test. This finding suggested that testing might become beneficial for retention but only after a certain level of schema acquisition has taken place through restudying several examples. However, experiment 2 had no control condition restudying examples instead of taking the immediate test. Experiment 3 (n = 129) included such a restudy condition, and there was no evidence that testing after studying four examples was more effective for
Recommended from our members
Spatial Transmission of 2009 Pandemic Influenza in the US
The 2009 H1N1 influenza pandemic provides a unique opportunity for detailed examination of the spatial dynamics of an emerging pathogen. In the US, the pandemic was characterized by substantial geographical heterogeneity: the 2009 spring wave was limited mainly to northeastern cities while the larger fall wave affected the whole country. Here we use finely resolved spatial and temporal influenza disease data based on electronic medical claims to explore the spread of the fall pandemic wave across 271 US cities and associated suburban areas. We document a clear spatial pattern in the timing of onset of the fall wave, starting in southeastern cities and spreading outwards over a period of three months. We use mechanistic models to tease apart the external factors associated with the timing of the fall wave arrival: differential seeding events linked to demographic factors, school opening dates, absolute humidity, prior immunity from the spring wave, spatial diffusion, and their interactions. Although the onset of the fall wave was correlated with school openings as previously reported, models including spatial spread alone resulted in better fit. The best model had a combination of the two. Absolute humidity or prior exposure during the spring wave did not improve the fit and population size only played a weak role. In conclusion, the protracted spread of pandemic influenza in fall 2009 in the US was dominated by short-distance spatial spread partially catalysed by school openings rather than long-distance transmission events. This is in contrast to the rapid hierarchical transmission patterns previously described for seasonal influenza. The findings underline the critical role that school-age children play in facilitating the geographic spread of pandemic influenza and highlight the need for further information on the movement and mixing patterns of this age group
- …