20 research outputs found

    Tumor heterogeneity and lesion-specific response to targeted therapy in colorectal cancer

    No full text
    How genomic heterogeneity associated with acquired resistance to targeted agents affects response to subsequent therapy is unknown. We studied EGFR blockade in colorectal cancer to assess whether tissue and liquid biopsies can be integrated with radiological imaging to monitor the impact of individual oncogenic alterations on lesion-specific responses. Biopsy of a patient's progressing liver metastasis following prolonged response to cetuximab revealed a K57T MEK1 mutation as a novel mechanism of acquired resistance. This lesion regressed upon treatment with panitumumab and the MEK inhibitor trametinib. In ctDNA, mutant MEK1 levels declined with treatment, but a previously unrecognized KRAS Q61H mutation was also identified that increased despite therapy. This same KRAS mutation was later found in a separate non-responding metastasis. In summary, parallel analyses of tumor biopsies and serial ctDNA monitoring show that lesion-specific radiographic responses to subsequent targeted therapies can be driven by distinct resistance mechanisms arising within separate tumor lesions in the same patient

    Cancer Genomics [version 1; referees: 2 approved]

    Get PDF
    Modern cancer genomics has emerged from the combination of the Human Genome Reference, massively parallel sequencing, and the comparison of tumor to normal DNA sequences, revealing novel insights into the cancer genome and its amazing diversity. Recent developments in applying our knowledge of cancer genomics have focused on the utility of these data for clinical applications. The emergent results of this translation into the clinical setting already are changing the clinical care and monitoring of cancer patients
    corecore