2,606 research outputs found
Optical sorting and detection of sub-micron objects in a motional standing wave
An extended interference pattern close to surface may result in both a
transmissive or evanescent surface fields for large area manipulation of
trapped particles. The affinity of differing particle sizes to a moving
standing wave light pattern allows us to hold and deliver them in a
bi-directional manner and importantly demonstrate experimentally particle
sorting in the sub-micron region. This is performed without the need of fluid
flow (static sorting). Theoretical calculations experimentally confirm that
certain sizes of colloidal particles thermally hop more easily between
neighboring traps. A new generic method is also presented for particle position
detection in an extended periodic light pattern and applied to characterization
of optical traps and particle behaviorComment: 5 pages, 6 figures, Optical Trapping pape
Pattern Matching with Variables: Fast Algorithms and New Hardness Results
A pattern (i. e., a string of variables and terminals) maps to a word, if this is obtained by uniformly replacing the variables by terminal words; deciding this is NP-complete. We present efficient
algorithmsfootnote{The computational model we use is the standard unit-cost RAM with logarithmic word size. Also, all logarithms appearing in our time complexity evaluations are in base 2.} that solve this problem for restricted classes of patterns. Furthermore, we show that it is NP-complete to decide, for a given number k and a word w, whether w can be factorised into k distinct factors; this shows that the injective version (i.e., different variables are replaced by different words) of the above matching problem is NP-complete even for very restricted cases
Long-Life, Lightweight, Multi-Roller Traction Drives for Planetary Vehicle Surface Exploration
NASA s initiative for Lunar and Martian exploration will require long lived, robust drive systems for manned vehicles that must operate in hostile environments. The operation of these mechanical drives will pose a problem because of the existing extreme operating conditions. Some of these extreme conditions include operating at a very high or very cold temperature, operating over a wide range of temperatures, operating in very dusty environments, operating in a very high radiation environment, and operating in possibly corrosive environments. Current drive systems use gears with various configurations of teeth. These gears must be lubricated with oil (or grease) and must have some sort of a lubricant resupply system. For drive systems, oil poses problems such as evaporation, becoming too viscous and eventually freezing at cold temperatures, being too thin to lubricate at high temperatures, being degraded by the radiation environment, being contaminated by the regolith (soil), and if vaporized (and not sealed), it will contaminate the regolith. Thus, it may not be advisable or even possible to use oil because of these limitations. An oil-less, compact traction vehicle drive is a drive designed for use in hostile environments like those that will be encountered on planetary surfaces. Initially, traction roller tests in vacuum were conducted to obtain traction and endurance data needed for designing the drives. From that data, a traction drive was designed that would fit into a prototype lunar rover vehicle, and this design data was used to construct several traction drives. These drives were then tested in air to determine their performance characteristics, and if any final corrections to the designs were necessary. A limitation with current speed reducer systems such as planetary gears and harmonic drives is the high-contact stresses that occur at tooth engagement and in the harmonic drive wave generator interface. These high stresses induce high wear of solid lubricant coatings, thus necessitating the use of liquid lubricants for long life
Extraction of Airways with Probabilistic State-space Models and Bayesian Smoothing
Segmenting tree structures is common in several image processing
applications. In medical image analysis, reliable segmentations of airways,
vessels, neurons and other tree structures can enable important clinical
applications. We present a framework for tracking tree structures comprising of
elongated branches using probabilistic state-space models and Bayesian
smoothing. Unlike most existing methods that proceed with sequential tracking
of branches, we present an exploratory method, that is less sensitive to local
anomalies in the data due to acquisition noise and/or interfering structures.
The evolution of individual branches is modelled using a process model and the
observed data is incorporated into the update step of the Bayesian smoother
using a measurement model that is based on a multi-scale blob detector.
Bayesian smoothing is performed using the RTS (Rauch-Tung-Striebel) smoother,
which provides Gaussian density estimates of branch states at each tracking
step. We select likely branch seed points automatically based on the response
of the blob detection and track from all such seed points using the RTS
smoother. We use covariance of the marginal posterior density estimated for
each branch to discriminate false positive and true positive branches. The
method is evaluated on 3D chest CT scans to track airways. We show that the
presented method results in additional branches compared to a baseline method
based on region growing on probability images.Comment: 10 pages. Pre-print of the paper accepted at Workshop on Graphs in
Biomedical Image Analysis. MICCAI 2017. Quebec Cit
On Iterated Twisted Tensor Products of Algebras
We introduce and study the definition, main properties and applications of
iterated twisted tensor products of algebras, motivated by the problem of
defining a suitable representative for the product of spaces in noncommutative
geometry. We find conditions for constructing an iterated product of three
factors, and prove that they are enough for building an iterated product of any
number of factors. As an example of the geometrical aspects of our
construction, we show how to construct differential forms and involutions on
iterated products starting from the corresponding structures on the factors,
and give some examples of algebras that can be described within our theory. We
prove a certain result (called ``invariance under twisting'') for a twisted
tensor product of two algebras, stating that the twisted tensor product does
not change when we apply certain kind of deformation. Under certain conditions,
this invariance can be iterated, containing as particular cases a number of
independent and previously unrelated results from Hopf algebra theory.Comment: 44 pages, 21 figures. More minor typos corrections, one more example
and some references adde
Levels of protein C and soluble thrombomodulin in critically ill patients with acute kidney injury: a multicenter prospective observational study.
Endothelial dysfunction contributes to the development of acute kidney injury (AKI) in animal models of ischemia reperfusion injury and sepsis. There are limited data on markers of endothelial dysfunction in human AKI. We hypothesized that Protein C (PC) and soluble thrombomodulin (sTM) levels could predict AKI. We conducted a multicenter prospective study in 80 patients to assess the relationship of PC and sTM levels to AKI, defined by the AKIN creatinine (AKI Scr) and urine output criteria (AKI UO). We measured marker levels for up to 10 days from intensive care unit admission. We used area under the curve (AUC) and time-dependent multivariable Cox proportional hazard model to predict AKI and logistic regression to predict mortality/non-renal recovery. Protein C and sTM were not different in patients with AKI UO only versus no AKI. On intensive care unit admission, as PC levels are usually lower with AKI Scr, the AUC to predict the absence of AKI was 0.63 (95%CI 0.44-0.78). The AUC using log10 sTM levels to predict AKI was 0.77 (95%CI 0.62-0.89), which predicted AKI Scr better than serum and urine neutrophil gelatinase-associated lipocalin (NGAL) and cystatin C, urine kidney injury molecule-1 and liver-fatty acid-binding protein. In multivariable models, PC and urine NGAL levels independently predicted AKI (p=0.04 and 0.02) and PC levels independently predicted mortality/non-renal recovery (p=0.04). In our study, PC and sTM levels can predict AKI Scr but are not modified during AKI UO alone. PC levels could independently predict mortality/non-renal recovery. Additional larger studies are needed to define the relationship between markers of endothelial dysfunction and AKI
Stability of adhesion clusters under constant force
We solve the stochastic equations for a cluster of parallel bonds with shared
constant loading, rebinding and the completely dissociated state as an
absorbing boundary. In the small force regime, cluster lifetime grows only
logarithmically with bond number for weak rebinding, but exponentially for
strong rebinding. Therefore rebinding is essential to ensure physiological
lifetimes. The number of bonds decays exponentially with time for most cases,
but in the intermediate force regime, a small increase in loading can lead to
much faster decay. This effect might be used by cell-matrix adhesions to induce
signaling events through cytoskeletal loading.Comment: Revtex, 4 pages, 4 Postscript files include
Small Universal Accepting Networks of Evolutionary Processors with Filtered Connections
In this paper, we present some results regarding the size complexity of
Accepting Networks of Evolutionary Processors with Filtered Connections
(ANEPFCs). We show that there are universal ANEPFCs of size 10, by devising a
method for simulating 2-Tag Systems. This result significantly improves the
known upper bound for the size of universal ANEPFCs which is 18.
We also propose a new, computationally and descriptionally efficient
simulation of nondeterministic Turing machines by ANEPFCs. More precisely, we
describe (informally, due to space limitations) how ANEPFCs with 16 nodes can
simulate in O(f(n)) time any nondeterministic Turing machine of time complexity
f(n). Thus the known upper bound for the number of nodes in a network
simulating an arbitrary Turing machine is decreased from 26 to 16
Recommended from our members
Time to treatment and survival in veterans with lung cancer eligible for curative intent therapy.
BackgroundThe Institute of Medicine emphasizes care timeliness as an important quality metric. We assessed treatment timeliness in stage I-IIIA lung cancer patients deemed eligible for curative intent therapy and analyzed the relationship between time to treatment (TTT) and timely treatment (TT) with survival.MethodsWe retrospectively reviewed consecutive cases of stage I-IIIA lung cancer deemed eligible for curative intent therapy at the VA San Diego Healthcare System between 10/2010-4/2017. We defined TTT as days from chest tumor board to treatment initiation and TT using guideline recommendations. We used multivariable (MVA) Cox proportional hazards regressions for survival analyses.ResultsIn 177 veterans, the median TTT was 35 days (29 days for chemoradiation, 36 for surgical resection, 42 for definitive radiation). TT occurred in 33% or 77% of patients when the most or least timely guideline recommendation was used, respectively. Patient characteristics associated with longer TTT included other cancer history, high simplified comorbidity score, stage I disease, and definitive radiation treatment. In MVA, TTT and TT [HR 0.53 (95% CI 0.27, 1.01) for least timely definition] were not associated with OS in stage I-IIIA patients, or disease-free survival in subgroup analyses of 122 stage I patients [HR 1.49 (0.62, 3.59) for least timely definition].ConclusionTreatment was timely in 33-77% of veterans with lung cancer deemed eligible for curative intent therapy. TTT and TT were not associated with survival. The time interval between diagnosis and treatment may offer an opportunity to deliver or improve other cancer care
Probing molecular free energy landscapes by periodic loading
Single molecule pulling experiments provide information about interactions in
biomolecules that cannot be obtained by any other method. However, the
reconstruction of the molecule's free energy profile from the experimental data
is still a challenge, in particular for the unstable barrier regions. We
propose a new method for obtaining the full profile by introducing a periodic
ramp and using Jarzynski's identity for obtaining equilibrium quantities from
non-equilibrium data. Our simulated experiments show that this method delivers
significant more accurate data than previous methods, under the constraint of
equal experimental effort.Comment: 4 pages, 3 figure
- …
