218 research outputs found

    Intermolecular interactions-photophysical properties relationships in phenanthrene-9,10-dicarbonitrile assemblies

    Get PDF
    Phenanthrene-9,10-dicarbonitriles show various luminescence behaviour in solution and in the solid state. Aggregation patterns of phenanthrene-9,10-dicarbonitriles govern their luminescent properties in the solid state. Single crystal structures of phenanthrene-9,10-dicarbonitriles showed head-to-tail intraplane (or quasi-intraplane) intermolecular interactions and π-stacking patterns with eclipsing of molecules when viewed orthogonal to the stacking plane. The π-stacking interactions were detected in the X-ray structures of phenanthrene-9,10-dicarbonitriles and studied by DFT calculations at the M06–2X/6–311++G(d,p) level of theory and topological analysis of the electron density distribution within the framework of QTAIM method. The estimated strength of the C⋯C contacts responsible for the π-stacking interactions is 0.6–1.1 kcal/mol. The orientation of molecules in crystals depends on the substituents in phenanthrene-9,10-dicarbonitriles. Distinct molecular orientation and packing arrangements in crystalline phenanthrene-9,10-dicarbonitriles ensured perturbed electronic communication among the nearest and non-nearest molecules through an interplay of excimer and dipole couplings. As a result, the intermolecular interactions govern the solid state luminescence of molecules

    Structural data of phenanthrene-9,10-dicarbonitriles

    Get PDF
    In this data article, we present the single-crystal XRD data of phenanthrene-9,10-dicarbonitriles. Detailed structure analysis and photophysical properties were discussed in our previous study, "Intermolecular interactions-photophysical properties relationships in phenanthrene-9,10-dicarbonitrile assemblies" (Afanasenko et al., 2020). The data include the intra- and intermolecular bond lengths and angles. (c) 2019 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/)

    Structures and photophysical properties of 3,4-diaryl-1H-pyrrol-2,5-diimines and 2,3-diarylmaleimides

    Get PDF
    Structural features of 3,4-diaryl-1H-pyrrol-2,5-diimines and their derivatives have been studied by molecular spectroscopy techniques, single-crystal X-ray diffraction, and DFT calculations. According to the theoretical calculations, the diimino tautomeric form of 3,4-diaryl-1H-pyrrol-2,5-diimines is more stable in solution than the imino-enamino form. We also found that the structurally related 2,3 exist in the solid state in the dimeric diketo form. 3,4-Diary1-1H-pyrrol-2,5-diimines and 2,3-diarylmaleimides exhibit fluorescence in the blue region of the visible spectrum. The fluorescence spectra have large Stokes shifts. Aryl substituents at the 3,4-positions of 1H-pyrrol-2,5-diimine do not significantly affect fluorescence properties. The insertion of donor substituents into 2,3diarylmaleimides leads to bathochromic shift of emission bands with hyperchromic effect. (C) 2017 Elsevier B.V. All rights reserved

    The vertebrate phylotypic stage and an early bilaterian-related stage in mouse embryogenesis defined by genomic information

    Get PDF
    BACKGROUND: Embryos of taxonomically different vertebrates are thought to pass through a stage in which they resemble one another morphologically. This "vertebrate phylotypic stage" may represent the basic vertebrate body plan that was established in the common ancestor of vertebrates. However, much controversy remains about when the phylotypic stage appears, and whether it even exists. To overcome the limitations of studies based on morphological comparison, we explored a comprehensive quantitative method for defining the constrained stage using expressed sequence tag (EST) data, gene ontologies (GO), and available genomes of various animals. If strong developmental constraints occur during the phylotypic stage of vertebrate embryos, then genes conserved among vertebrates would be highly expressed at this stage. RESULTS: We established a novel method for evaluating the ancestral nature of mouse embryonic stages that does not depend on comparative morphology. The numerical "ancestor index" revealed that the mouse indeed has a highly conserved embryonic period at embryonic day 8.0–8.5, the time of appearance of the pharyngeal arch and somites. During this period, the mouse prominently expresses GO-determined developmental genes shared among vertebrates. Similar analyses revealed the existence of a bilaterian-related period, during which GO-determined developmental genes shared among bilaterians are markedly expressed at the cleavage-to-gastrulation period. The genes associated with the phylotypic stage identified by our method are essential in embryogenesis. CONCLUSION: Our results demonstrate that the mid-embryonic stage of the mouse is indeed highly constrained, supporting the existence of the phylotypic stage. Furthermore, this candidate stage is preceded by a putative bilaterian ancestor-related period. These results not only support the developmental hourglass model, but also highlight the hierarchical aspect of embryogenesis proposed by von Baer. Identification of conserved stages and tissues by this method in various animals would be a powerful tool to examine the phylotypic stage hypothesis, and to understand which kinds of developmental events and gene sets are evolutionarily constrained and how they limit the possible variations of animal basic body plans

    Factors Associated with Work Participation and Work Functioning in Depressed Workers: A Systematic Review

    Get PDF
    Background Depression is associated with negative work outcomes such as reduced work participation (WP) (e.g., sick leave duration, work status) and work functioning (WF) (e.g., loss of productivity, work limitations). For the development of evidence-based interventions to improve these work outcomes, factors predicting WP and WF have to be identified. Methods This paper presents a systematic literature review of studies identifying factors associated with WP and WF of currently depressed workers. Results A total of 30 studies were found that addressed factors associated with WP (N = 19) or WF (N = 11). For both outcomes, studies reported most often on the relationship with disorder-related factors, whereas personal factors and work-related factors were less frequently addressed. For WP, the following relationships were supported: strong evidence was found for the association between a long duration of the depressive episode and work disability. Moderate evidence was found for the associations between more severe types of depressive disorder, presence of co-morbid mental or physical disorders, older age, a history of previous sick leave, and work disability. For WF, severe depressive symptoms were associated with work limitations, and clinical improvement was related to work productivity (moderate evidence). Due to the cross-sectional nature of about half of the studies, only few true prospective associations could be identified. Conclusion Our study identifies gaps in knowledge regarding factors predictive of WP and WF in depressed workers and can be used for the design of future research and evidence-based interventions. We recommend undertaking more longitudinal studies to identify modifiable factors predictive of WP and WF, especially work-related and personal factors

    The evolution of a highly variable sex chromosome in Gehyra purpurascens (Gekkonidae)

    Full text link
    A karyotypic survey of the gekkonid lizard Gehyra purpurascens revealed a distinctive sex chromosome system. G-banding showed that the Z Chromosome of males is derived from a tandem fusion of two acrocentric chromosomes of a presumed ancestral Gehyra with 2n=44. Through the application of G-; N- and C-banding, a total of six morphs of the W chromosome were identified. These differ by paracentric and pericentric inversions and, in one case, by a centric shift. The possible reasons for such extensive variation in the W chromosome are considered, and it is suggested that increased mutability of the W chromosome may be a causal factor. In contrast to earlier speculations, this example demonstrates that sex chromosomes can evolve without significant changes in the amount of C-band heterochromatin.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/47361/1/412_2004_Article_BF00292447.pd

    What determines cell size?

    Get PDF
    AbstractFirst paragraph (this article has no abstract) For well over 100 years, cell biologists have been wondering what determines the size of cells. In modern times, we know all of the molecules that control the cell cycle and cell division, but we still do not understand how cell size is determined. To check whether modern cell biology has made any inroads on this age-old question, BMC Biology asked several heavyweights in the field to tell us how they think cell size is controlled, drawing on a range of different cell types. The essays in this collection address two related questions - why does cell size matter, and how do cells control it

    Molecular specification of germ layers in vertebrate embryos

    Get PDF
    corecore