4,744 research outputs found
Understanding Charge Transfer in Donor-Acceptor/Metal Systems: A Combined Theoretical and Experimental Study
We develop an effective potential approach for assessing the flow of charge
within a two-dimensional donor-acceptor/metal network based on core-level
shifts. To do so, we perform both density functional theory (DFT) calculations
and x-ray photoemission spectroscopy (XPS) measurements of the core-level
shifts for three different monolayers adsorbed on a Ag substrate. Specifically,
we consider perfluorinated pentacene (PFP), copper phthalocyanine (CuPc) and
their 1:1 mixture (PFP+CuPc) adsorbed on Ag(111).Comment: 12 pages, 10 figure
A Binary Host Plant Volatile Lure Combined With Acetic Acid to Monitor Codling Moth (Lepidoptera: Tortricidae)
Identification of intrinsic electron trapping sites in bulk amorphous silica from ab initio calculations
Using ab initio calculations we demonstrate that extra electrons in pure amorphous SiO2 can be trapped in deep band gap states. Classical potentials were used to generate amorphous silica models and density functional theory to characterise the geometrical and electronic structures of trapped electrons. Extra electrons can trap spontaneously on pre-existing structural precursors in amorphous SiO2 and produce ≈≈3.2 eV deep states in the band gap. These precursors comprise wide (⩾⩾130°°) O–Si–O angles and elongated Si–O bonds at the tails of corresponding distributions. The electron trapping in amorphous silica structure results in an opening of the O–Si–O angle (up to almost 180°°). We estimate the concentration of these electron trapping sites to be View the MathML source≈5×1019cm-3
Nature of intrinsic and extrinsic electron trapping in SiO 2
Using classical and ab initio calculations we demonstrate that extra electrons can be trapped in pure crystalline and amorphous SiO2 (a-SiO2) in deep band gap states. The structure of trapped electron sites in pure a-SiO2 is similar to that of Ge electron centers and so-called [SiO4/Li]0 centers in α quartz. Classical potentials were used to generate amorphous silica models and density functional theory to characterize the geometrical and electronic structures of trapped electrons in crystalline and amorphous silica. The calculations demonstrate that an extra electron can be trapped at a Ge impurity in α quartz in six different configurations. An electron in the [SiO4/Li]0 center is trapped on a regular Si ion with the Li ion residing nearby. Extra electrons can trap spontaneously on pre-existing structural precursors in amorphous SiO2, while the electron self-trapping in α quartz requires overcoming a barrier of about 0.6 eV. The precursors for electron trapping in amorphous SiO2 comprise wide (≥132∘) O–Si–O angles and elongated Si–O bonds at the tails of corresponding distributions. Using this criterion, we estimate the concentration of these electron trapping sites at ≈4×1019 cm−3
Isolation and characterisation of human gingival margin-derived STRO-1/MACS+ and MACS− cell populations
Recently, gingival margin-derived stem/progenitor cells isolated via
STRO-1/magnetic activated cell sorting (MACS) showed remarkable periodontal
regenerative potential in vivo. As a second-stage investigation, the present
study's aim was to perform in vitro characterisation and comparison of the
stem/progenitor cell characteristics of sorted STRO-1-positive (MACS+) and
STRO-1-negative (MACS−) cell populations from the human free gingival margin.
Cells were isolated from the free gingiva using a minimally invasive technique
and were magnetically sorted using anti-STRO-1 antibodies. Subsequently, the
MACS+ and MACS− cell fractions were characterized by flow cytometry for
expression of CD14, CD34, CD45, CD73, CD90, CD105, CD146/MUC18 and STRO-1.
Colony-forming unit (CFU) and multilineage differentiation potential were
assayed for both cell fractions. Mineralisation marker expression was examined
using real-time polymerase chain reaction (PCR). MACS+ and MACS− cell
fractions showed plastic adherence. MACS+ cells, in contrast to MACS− cells,
showed all of the predefined mesenchymal stem/progenitor cell characteristics
and a significantly higher number of CFUs (P<0.01). More than 95% of MACS+
cells expressed CD105, CD90 and CD73; lacked the haematopoietic markers CD45,
CD34 and CD14, and expressed STRO-1 and CD146/MUC18. MACS− cells showed a
different surface marker expression profile, with almost no expression of CD14
or STRO-1, and more than 95% of these cells expressed CD73, CD90 and
CD146/MUC18, as well as the haematopoietic markers CD34 and CD45 and CD105.
MACS+ cells could be differentiated along osteoblastic, adipocytic and
chondroblastic lineages. In contrast, MACS− cells demonstrated slight
osteogenic potential. Unstimulated MACS+ cells showed significantly higher
expression of collagen I (P<0.05) and collagen III (P<0.01), whereas MACS−
cells demonstrated higher expression of osteonectin (P<0.05; Mann–Whitney).
The present study is the first to compare gingival MACS+ and MACS− cell
populations demonstrating that MACS+ cells, in contrast to MACS− cells,
harbour stem/progenitor cell characteristics. This study also validates the
effectiveness of the STRO-1/MACS+ technique for the isolation of gingival
stem/progenitor cells. Human free gingival margin-derived STRO-1/MACS+ cells
are a unique renewable source of multipotent stem/progenitor cells
Live Imaging of Type I Collagen Assembly Dynamics in Osteoblasts Stably Expressing GFP and mCherry-Tagged Collagen Constructs
Type I collagen is the most abundant extracellular matrix protein in bone and other connective tissues and plays key roles in normal and pathological bone formation as well as in connective tissue disorders and fibrosis. Although much is known about the collagen biosynthetic pathway and its regulatory steps, the mechanisms by which it is assembled extracellularly are less clear. We have generated GFPtpz and mCherry-tagged collagen fusion constructs for live imaging of type I collagen assembly by replacing the α2(I)-procollagen N-terminal propeptide with GFPtpz or mCherry. These novel imaging probes were stably transfected into MLO-A5 osteoblast-like cells and fibronectin-null mouse embryonic fibroblasts (FN-null-MEFs) and used for imaging type I collagen assembly dynamics and its dependence on fibronectin. Both fusion proteins co-precipitated with α1(I)-collagen and remained intracellular without ascorbate but were assembled into α1(I) collagen-containing extracellular fibrils in the presence of ascorbate. Immunogold-EM confirmed their ultrastuctural localization in banded collagen fibrils. Live cell imaging in stably transfected MLO-A5 cells revealed the highly dynamic nature of collagen assembly and showed that during assembly the fibril networks are continually stretched and contracted due to the underlying cell motion. We also observed that cell-generated forces can physically reshape the collagen fibrils. Using co-cultures of mCherry- and GFPtpz-collagen expressing cells, we show that multiple cells contribute collagen to form collagen fiber bundles. Immuno-EM further showed that individual collagen fibrils can receive contributions of collagen from more than one cell. Live cell imaging in FN-null-MEFs expressing GFPtpz-collagen showed that collagen assembly was both dependent upon and dynamically integrated with fibronectin assembly. These GFP-collagen fusion constructs provide a powerful tool for imaging collagen in living cells and have revealed novel and fundamental insights into the dynamic mechanisms for the extracellular assembly of collagen
GRIDKIT: Pluggable overlay networks for Grid computing
A `second generation' approach to the provision of Grid middleware is now emerging which is built on service-oriented architecture and web services standards and technologies. However, advanced Grid applications have significant demands that are not addressed by present-day web services platforms. As one prime example, current platforms do not support the rich diversity of communication `interaction types' that are demanded by advanced applications (e.g. publish-subscribe, media streaming, peer-to-peer interaction). In the paper we describe the Gridkit middleware which augments the basic service-oriented architecture to address this particular deficiency. We particularly focus on the communications infrastructure support required to support multiple interaction types in a unified, principled and extensible manner-which we present in terms of the novel concept of pluggable overlay networks
Functional modelling of a novel mutation in BBS5.
BACKGROUND: Bardet-Biedl syndrome (BBS) is an autosomal recessive ciliopathy disorder with 18 known causative genes (BBS1-18). The primary clinical features are renal abnormalities, rod-cone dystrophy, post-axial polydactyly, learning difficulties, obesity and male hypogonadism. RESULTS: We describe the clinical phenotype in three Saudi siblings in whom we have identified a novel mutation in exon 12 of BBS5 (c.966dupT; p.Ala323CysfsX57). This single nucleotide duplication creates a frame shift results in a predicted elongated peptide. Translation blocking Morpholino oligonucleotides were used to create zebrafish bbs5 morphants. Morphants displayed retinal layering defects, abnormal cardiac looping and dilated, cystic pronephric ducts with reduced cilia expression. Morphants also displayed significantly reduced dextran clearance via the pronephros compared to wildtype embryos, suggesting reduced renal function in morphants. The eye, kidney and heart defects reported in morphant zebrafish resemble the human phenotype of BBS5 mutations. The pathogenicity of the novel BBS5 mutation was determined. Mutant mRNA was unable to rescue pleiotropic phenotypes of bbs5 morphant zebrafish and in cell culture we demonstrate a mislocalisation of mutant BBS5 protein which fails to localise discretely with the basal body. CONCLUSIONS: We conclude that this novel BBS5 mutation has a deleterious function that accounts for the multisystem ciliopathy phenotype seen in affected human patients
Concurrent Acquisition of a Single Nucleotide Polymorphism in Diverse Influenza H5N1 Clade 2.2 Sub-clades
Highly pathogenic Influenza A H5N1 was first identified in Guangdong Province in 1996, followed by human cases in Hong Kong in 1997. The number of confirmed human cases now exceeds 300, and the associated Case Fatality Rate exceeds 60%. The genetic diversity of the serotype continues to increase. Four distinct clades or sub-clades have been linked to human cases. The gradual genetic changes identified in the sub-clades have been attributed to copy errors by viral encoded polymerases that lack an editing function, thereby resulting in antigenic drift. We report here the concurrent acquisition of the same polymorphism by multiple, genetically distinct, clade 2.2 sub-clades in Egypt, Russia, and Ghana. These changes are not easily explained by the current theory of “random mutation” through copy error, and are more easily explained by recombination with a common source. This conclusion is supported by additional polymorphisms shared by clade 2.2 isolates in Egypt and Germany
- …
