4,946 research outputs found
The turbomachine blading design using S2-S1 approach
The boundary conditions corresponding to the design problem when the blades being simulated by the bound vorticity distribution are presented. The 3D flow is analyzed by the two steps S2 - S1 approach. In the first step, the number of blades is supposed to be infinite, the vortex distribution is transformed into an axisymmetric one, so that the flow field can be analyzed in a meridional plane. The thickness distribution of the blade producing the flow channel striction is taken into account by the modification of metric tensor in the continuity equation. Using the meridional stream function to define the flow field, the mass conservation is satisfied automatically. The governing equation is deduced from the relation between the azimuthal component of the vorticity and the meridional velocity. The value of the azimuthal component of the vorticity is provided by the hub to shroud equilibrium condition. This step leads to the determination of the axisymmetric stream sheets as well as the approximate camber surface of the blade. In the second step, the finite number of blades is taken into account, the inverse problem corresponding to the blade to blade flow confined in each stream sheet is analyzed. The momentum equation implies that the free vortex of the absolute velocity must be tangential to the stream sheet. The governing equation for the blade to blade flow stream function is deduced from this condition. At the beginning, the upper and the lower surfaces of the blades are created from the camber surface obtained from the first step with the assigned thickness distribution. The bound vorticity distribution and the penetrating flux conservation applied on the presumed blade surface constitute the boundary conditions of the inverse problem. The detection of this flux leads to the rectification of the geometry of the blades
Detection and Mapping of Decoupled Stellar and Ionized Gas Structures in the Ultraluminous Infrared Galaxy IRAS 12112+0305
Integral field optical spectroscopy with the INTEGRAL fiber-fed system and
HST optical imaging are used to map the complex stellar and warm ionized gas
structure in the ultraluminous infrared galaxy IRAS 12112+0305. Images
reconstructed from wavelength-delimited extractions of the integral field
spectra reveal that the observed ionized gas distribution is decoupled from the
stellar main body of the galaxy, with the dominant continuum and emission-line
regions separated by projected distances of up to 7.5 kpc. The two optical
nuclei are detected as apparently faint emission-line regions, and their
optical properties are consistent with being dust-enshrouded weak-[OI] LINERs.
The brightest emission-line region is associated with a faint (m_{I}= 20.4),
giant HII region of 600 pc diameter, where a young (about 5 Myr) massive
cluster of about 2 10 dominates the ionization.
Internal reddening towards the line-emitting regions and the optical nuclei
ranges from 1 to 8 magnitudes, in the visual. Taken the reddening into aacount,
the overall star formation in IRAS 12112+0305 is dominated by starbursts
associated with the two nuclei and corresponding to a star formation rate of 80
yr.Comment: 2 figures, accepted to Ap.J. Letter
Magnetic properties of Gd_xY_{1-x}Fe_2Zn_{20}: dilute, large, moments in a nearly ferromagnetic Fermi liquid
Single crystals of the dilute, rare earth bearing, pseudo-ternary series,
Gd_xY_{1-x}Fe_2Zn_{20} were grown out of Zn-rich solution. Measurements of
magnetization, resistivity and heat capacity on Gd_xY_{1-x}Fe_2Zn_{20} samples
reveal ferromagnetic order of Gd^{3+} local moments across virtually the whole
series (). The magnetic properties of this series, including the
ferromagnetic ordering, the reduced saturated moments at base temperature, the
deviation of the susceptibilities from Curie-Weiss law and the anomalies in the
resistivity, are understood within the frame work of dilute,
moments (Gd^{3+}) embedded in a nearly ferromagnetic Fermi liquid
(YFe_2Zn_{20}). The s-d model is employed to further explain the variation of
with x as well as the temperature dependences of of the
susceptibilities
Les stratégies de politique monétaire après la crise.
L’objet de cet article est de présenter les principales conclusions du panel, organisé lors des VIIIe « Journées » de la Fondation Banque de France pour la recherche en économie monétaire, bancaire et financière le 21 juin 2010, sur le thème des stratégies de politique monétaire après la crise.
Accretion-Inhibited Star Formation in the Warm Molecular Disk of the Green-valley Elliptical Galaxy NGC 3226
We present archival Spitzer photometry and spectroscopy, and Herschel
photometry, of the peculiar "Green Valley" elliptical galaxy NGC~3226. The
galaxy, which contains a low-luminosity AGN, forms a pair with NGC~3227, and is
shown to lie in a complex web of stellar and HI filaments. Imaging at 8 and
16m reveals a curved plume structure 3 kpc in extent, embedded within the
core of the galaxy, and coincident with the termination of a 30 kpc-long HI
tail. In-situ star formation associated with the IR plume is identified from
narrow-band HST imaging. The end of the IR-plume coincides with a warm
molecular hydrogen disk and dusty ring, containing 0.7-1.1 10
M detected within the central kpc. Sensitive upper limits to the
detection of cold molecular gas may indicate that a large fraction of the H
is in a warm state. Photometry, derived from the UV to the far-IR, shows
evidence for a low star formation rate of 0.04 M yr
averaged over the last 100 Myrs. A mid-IR component to the Spectral Energy
Distribution (SED) contributes 20 of the IR luminosity of the galaxy,
and is consistent with emission associated with the AGN. The current measured
star formation rate is insufficient to explain NGC3226's global UV-optical
"green" colors via the resurgence of star formation in a "red and dead" galaxy.
This form of "cold accretion" from a tidal stream would appear to be an
inefficient way to rejuvenate early-type galaxies, and may actually inhibit
star formation.Comment: Accepted for Publication ApJ Oct 201
GRB 050223: A dark GRB in a dusty starburst galaxy
Aims: We aim at detecting and determining the properties of the host galaxy
of the dark GRB 050223.
Methods: We use VLT optical/NIR images coupled to Swift X-ray positioning,
and optical spectra of the host galaxy to measure its properties.
Results: We find a single galaxy within the Swift error box of GRB 050223. It
is located at z = 0.584 and its luminosity is L ~ 0.4 L*. Emission lines in the
galaxy spectrum imply an intrinsic SFR > 7 Msun/yr, and a large extinction A_V
> 2 mag within it. We also detect absorption lines, which reveal an underlying
stellar population with an age between 40 Myr and 1.5 Gyr.
Conclusions: The identification of a host galaxy with atypical properties
using only the X-ray transient suggests that a bias may be present in the
former sample of host galaxies. Dust obscuration together with intrinsic
faintness are the most probable causes for the darkness of this burst.Comment: 4 pages, 2 figures, accepted for publication in Astronomy &
Astrophysic
- …
