2,498 research outputs found
Challenge Patient Dispatching in Mass Casualty Incidents
Efficient management of mass casualty incidents is complex, since regular emergency medical services struc-tures have to be switched to a temporary âdisaster modeâ involving additional operational and tactical struc-tures. Most of the relevant decisions have to be taken on-site in a provisional and chaotic environment. Data gathering about affected persons is one side of the coin; the other side is on-site patient dispatching requiring information exchange with the regular emergency call center and destination hospitals. In this paper we extend a previous conference contribution about the research project e-Triage to the aspect of patient data and on-site patient dispatching. Our considerations reflect the situation in Germany, which deserves from our point of view substantial harmonization
The effect of on/off indicator design on state confusion, preference, and response time performance, executive summary
Investigated are five designs of software-based ON/OFF indicators in a hypothetical Space Station Power System monitoring task. The hardware equivalent of the indicators used in the present study is the traditional indicator light that illuminates an ON label or an OFF label. Coding methods used to represent the active state were reverse video, color, frame, check, or reverse video with check. Display background color was also varied. Subjects made judgments concerning the state of indicators that resulted in very low error rates and high percentages of agreement across indicator designs. Response time measures for each of the five indicator designs did not differ significantly, although subjects reported that color was the best communicator. The impact of these results on indicator design is discussed
Quasiperiodic graphs: structural design, scaling and entropic properties
A novel class of graphs, here named quasiperiodic, are constructed via
application of the Horizontal Visibility algorithm to the time series generated
along the quasiperiodic route to chaos. We show how the hierarchy of
mode-locked regions represented by the Farey tree is inherited by their
associated graphs. We are able to establish, via Renormalization Group (RG)
theory, the architecture of the quasiperiodic graphs produced by irrational
winding numbers with pure periodic continued fraction. And finally, we
demonstrate that the RG fixed-point degree distributions are recovered via
optimization of a suitably defined graph entropy
Sludge management paradigms: impact of priority substances and priority hazardous substances
As a by-product of treatment processes, municipal wastewater treatment plants (WWTP) generate large quantities of sludge, with sludge treatment focused on sterilisation, volume reduction and biogas production. Whilst the EU Sewage Sludge Directive sets limits on the concentrations of selected metals in sludge applied to agricultural land, the potential impact of many EU Water Framework Directive priority and priority hazardous substances (PS/PHS) on human or environmental health has yet to be fully addressed. Research presented here shows that treated sludge from five urban WWTPs experiencing differing local conditions contain a range of PS/PHS including substances whose use has been banned or heavily restricted. Concentrations reported in this study do not exceed the limit values set for the four PS/PHS currently included in the EU Sewage Sludge Directive. However, more stringent national limits are exceeded. The basis for developing and applying Predicted No Effect Concentration (PNEC) values for the application of sludge to agricultural land is still unclear. However, comparison between PS/PHS sludge concentrations and available PNEC soil values clearly indicate the need for further research. Implications and research priorities arising from these findings in terms of achieving compliance with EU Sewage Sludge and Water Framework Directives are discussed
Observing the Formation of Long-range Order during Bose-Einstein Condensation
We have experimentally investigated the formation of off-diagonal long-range
order in a gas of ultracold atoms. A magnetically trapped atomic cloud prepared
in a highly nonequilibrium state thermalizes and thereby crosses the
Bose-Einstein condensation phase transition. The evolution of phase coherence
between different regions of the sample is constantly monitored and information
on the spatial first-order correlation function is obtained. We observe the
growth of the spatial coherence and the formation of long-range order in real
time and compare it to the growth of the atomic density. Moreover, we study the
evolution of the momentum distribution during the nonequilibrium formation of
the condensate.Comment: 4 pages, 4 figure
Topological properties and fractal analysis of recurrence network constructed from fractional Brownian motions
Many studies have shown that we can gain additional information on time
series by investigating their accompanying complex networks. In this work, we
investigate the fundamental topological and fractal properties of recurrence
networks constructed from fractional Brownian motions (FBMs). First, our
results indicate that the constructed recurrence networks have exponential
degree distributions; the relationship between and of recurrence networks decreases with the Hurst
index of the associated FBMs, and their dependence approximately satisfies
the linear formula . Moreover, our numerical results of
multifractal analysis show that the multifractality exists in these recurrence
networks, and the multifractality of these networks becomes stronger at first
and then weaker when the Hurst index of the associated time series becomes
larger from 0.4 to 0.95. In particular, the recurrence network with the Hurst
index possess the strongest multifractality. In addition, the
dependence relationships of the average information dimension on the Hurst index can also be
fitted well with linear functions. Our results strongly suggest that the
recurrence network inherits the basic characteristic and the fractal nature of
the associated FBM series.Comment: 25 pages, 1 table, 15 figures. accepted by Phys. Rev.
Presence and fate of priority substances in domestic greywater treatment and reuse systems
A wide range of household sources may potentially contribute to contaminant loads in domestic greywater. The ability of greywater treatment systems to act as emission control barriers for household micropollutants, thereby providing environmental benefits in addition to potable water savings, have not been fully explored. This paper investigates the sources, presence and potential fate of a selection of xenobiotic micropollutants in on-site greywater treatment systems. All of the investigated compounds are listed under the European Water Framework Directive as either "Priority Substances" (PS) or "Priority Hazardous Substances" (PHS). Significant knowledge gaps are identified. A wide range of potential treatment trains are available for greywater treatment and reuse but treatment efficiency data for priority substances and other micropollutants is very limited. Geochemical modelling indicates that PS/PHS removal during treatment is likely to be predominantly due to sludge/solid phase adsorption, with only minor contributions to the water phase. Many PS/PHS are resistant to biodegradation and as the majority of automated greywater treatment plants periodically discharge sludge to the municipal sewerage system, greywater treatment is unlikely to act as a comprehensive PS/PHS emission barrier. Hence, it is important to ensure that other source control options (e.g. eco-labeling, substance substitution, and regulatory controls) for household items continue to be pursued, in order that PS/PHS emissions from these sources are effectively reduced and/or phased out as required under the demands of the European Water Framework Directive
Host-selected mutations converging on a global regulator drive an adaptive leap towards symbiosis in bacteria
Host immune and physical barriers protect against pathogens but also impede the establishment of essential symbiotic partnerships. To reveal mechanisms by which beneficial organisms adapt to circumvent host defenses, we experimentally evolved ecologically distinct bioluminescent Vibrio fischeri by colonization and growth within the light organs of the squid Euprymna scolopes. Serial squid passaging of bacteria produced eight distinct mutations in the binK sensor kinase gene, which conferred an exceptional selective advantage that could be demonstrated through both empirical and theoretical analysis. Squid-adaptive binK alleles promoted colonization and immune evasion that were mediated by cell-associated matrices including symbiotic polysaccharide (Syp) and cellulose. binK variation also altered quorum sensing, raising the threshold for luminescence induction. Preexisting coordinated regulation of symbiosis traits by BinK presented an efficient solution where altered BinK function was the key to unlock multiple colonization barriers. These results identify a genetic basis for microbial adaptability and underscore the importance of hosts as selective agents that shape emergent symbiont populations
- âŠ