31 research outputs found

    The NOPTILUS project: Autonomous multi-AUV navigation for exploration of unknown environments

    Get PDF
    Current multi-AUV systems are far from being capable of fully autonomously taking over real-life complex situation-awareness operations. As such operations require advanced reasoning and decision-making abilities, current designs have to heavily rely on human operators. The involvement of humans, however, is by no means a guarantee of performance; humans can easily be over-whelmed by the information overload, fatigue can act detrimentally to their performance, properly coordinating vehicles actions is hard, and continuous operation is all but impossible. Within the European funded project NOPTILUS we take the view that an effective fully-autonomous multi-AUV concept/system, is capable of overcoming these shortcomings, by replacing human-operated operations by a fully autonomous one. In this paper, we present a new approach that is able to efficiently and fully-autonomously navigate a team of AUVs when deployed in exploration of unknown static and dynamic environments towards providing accurate static/dynamic maps of the environment. Additionally to achieving to efficiently and fully-autonomously navigate the AUV team, the proposed approach possesses certain advantages such as its extremely computational simplicity and scalability, and the fact that it can very straightforwardly embed and type of physical or other constraints and limitations (e.g., obstacle avoidance, nonlinear sensor noise models, localization fading environments, etc)

    System for deployment of groups of unmanned micro aerial vehicles in GPS-denied environments using onboard visual relative localization

    Get PDF
    A complex system for control of swarms of micro aerial vehicles (MAV), in literature also called as unmanned aerial vehicles (UAV) or unmanned aerial systems (UAS), stabilized via an onboard visual relative localization is described in this paper. The main purpose of this work is to verify the possibility of self-stabilization of multi-MAV groups without an external global positioning system. This approach enables the deployment of MAV swarms outside laboratory conditions, and it may be considered an enabling technique for utilizing fleets of MAVs in real-world scenarios. The proposed visual-based stabilization approach has been designed for numerous different multi-UAV robotic applications (leader-follower UAV formation stabilization, UAV swarm stabilization and deployment in surveillance scenarios, cooperative UAV sensory measurement) in this paper. Deployment of the system in real-world scenarios truthfully verifies its operational constraints, given by limited onboard sensing suites and processing capabilities. The performance of the presented approach (MAV control, motion planning, MAV stabilization, and trajectory planning) in multi-MAV applications has been validated by experimental results in indoor as well as in challenging outdoor environments (e.g., in windy conditions and in a former pit mine)

    Roll control of unmanned aerial vehicles using fuzzy logic

    No full text
    Abstract:- This paper presents an effective methodology for the simplified representation of the kinematics and the horizontal flight control of Unmanned Aerial Vehicles (UAVs). A real UAV has been used as a model in this project. The flight behavior of the UAV has been modeled in terms of simple analytic relationships, which proved very helpful in representing UAV’s actual horizontal motion. A fuzzy controller for the autonomous navigation of UAVs on the horizontal plane, has been developed. The controller inputs are the heading error of the aircraft and its current roll angle, whereas the output is the change command of the roll angle. Despite its simple design, the controller achieved the desired performance as evidenced from various simulated test flights
    corecore