4,837 research outputs found

    Calbindin-D32k Is Localized to a Subpopulation of Neurons in the Nervous System of the Sea Cucumber Holothuria glaberrima (Echinodermata)

    Get PDF
    Members of the calbindin subfamily serve as markers of subpopulations of neurons within the vertebrate nervous system. Although markers of these proteins are widely available and used, their application to invertebrate nervous systems has been very limited. In this study we investigated the presence and distribution of members of the calbindin subfamily in the sea cucumber Holothuria glaberrima (Selenka, 1867). Immunohistological experiments with antibodies made against rat calbindin 1, parvalbumin, and calbindin 2, showed that these antibodies labeled cells and fibers within the nervous system of H. glaberrima. Most of the cells and fibers were co-labeled with the neural-specific marker RN1, showing their neural specificity. These were distributed throughout all of the nervous structures, including the connective tissue plexi of the body wall and podia. Bioinformatics analyses of the possible antigen recognized by these markers showed that a calbindin 2-like protein present in the sea urchin Strongylocentrotus purpuratus, corresponded to the calbindin-D32k previously identified in other invertebrates. Western blots with anti-calbindin 1 and anti-parvalbumin showed that these markers recognized an antigen of approximately 32 kDa in homogenates of radial nerve cords of H. glaberrima and Lytechinus variegatus. Furthermore, immunoreactivity with anti-calbindin 1 and anti-parvalbumin was obtained to a fragment of calbindin-D32k of H. glaberrima. Our findings suggest that calbindin-D32k is present in invertebrates and its sequence is more similar to the vertebrate calbindin 2 than to calbindin 1. Thus, characterization of calbindin-D32k in echinoderms provides an important view of the evolution of this protein family and represents a valuable marker to study the nervous system of invertebrates

    VAMOS: a Pathfinder for the HAWC Gamma-Ray Observatory

    Full text link
    VAMOS was a prototype detector built in 2011 at an altitude of 4100m a.s.l. in the state of Puebla, Mexico. The aim of VAMOS was to finalize the design, construction techniques and data acquisition system of the HAWC observatory. HAWC is an air-shower array currently under construction at the same site of VAMOS with the purpose to study the TeV sky. The VAMOS setup included six water Cherenkov detectors and two different data acquisition systems. It was in operation between October 2011 and May 2012 with an average live time of 30%. Besides the scientific verification purposes, the eight months of data were used to obtain the results presented in this paper: the detector response to the Forbush decrease of March 2012, and the analysis of possible emission, at energies above 30 GeV, for long gamma-ray bursts GRB111016B and GRB120328B.Comment: Accepted for pubblication in Astroparticle Physics Journal (20 pages, 10 figures). Corresponding authors: A.Marinelli and D.Zaboro

    The Sensitivity of HAWC to High-Mass Dark Matter Annihilations

    Full text link
    The High Altitude Water Cherenkov (HAWC) observatory is a wide field-of-view detector sensitive to gamma rays of 100 GeV to a few hundred TeV. Located in central Mexico at 19 degrees North latitude and 4100 m above sea level, HAWC will observe gamma rays and cosmic rays with an array of water Cherenkov detectors. The full HAWC array is scheduled to be operational in Spring 2015. In this paper, we study the HAWC sensitivity to the gamma-ray signatures of high-mass (multi- TeV) dark matter annihilation. The HAWC observatory will be sensitive to diverse searches for dark matter annihilation, including annihilation from extended dark matter sources, the diffuse gamma-ray emission from dark matter annihilation, and gamma-ray emission from non-luminous dark matter subhalos. Here we consider the HAWC sensitivity to a subset of these sources, including dwarf galaxies, the M31 galaxy, the Virgo cluster, and the Galactic center. We simulate the HAWC response to gamma rays from these sources in several well-motivated dark matter annihilation channels. If no gamma-ray excess is observed, we show the limits HAWC can place on the dark matter cross-section from these sources. In particular, in the case of dark matter annihilation into gauge bosons, HAWC will be able to detect a narrow range of dark matter masses to cross-sections below thermal. HAWC should also be sensitive to non-thermal cross-sections for masses up to nearly 1000 TeV. The constraints placed by HAWC on the dark matter cross-section from known sources should be competitive with current limits in the mass range where HAWC has similar sensitivity. HAWC can additionally explore higher dark matter masses than are currently constrained.Comment: 15 pages, 4 figures, version to be published in PR

    Bolos intrarruminales con liberación controlada de minerales traza. Revisión

    Get PDF
    Los minerales traza son nutrientes esenciales para el mantenimiento de la vida, el crecimiento y la reproducción. Las deficiencias de minerales en rumiantes afectan las funciones fisiológicas y metabólicas que con frecuencia causan enfermedades. El diseño y uso de los bolos intrarruminales de liberación controlada (BILC) es una alternativa para corregir la falta de los microelementos en el organismo. El propósito de esta revisión es evidenciar la información disponible sobre los diferentes tipos de BILC de minerales traza, así como de los métodos de fabricación que incluye: técnicas de extrusión en caliente, granulación por fusión y fusión directa. Además, se describen los efectos de BILC relacionados en la salud, en los parámetros productivos y reproductivos en rumiantes

    Electronic Properties of Sulfur Covered Ru(0001) Surfaces

    Get PDF
    The structural properties of sulfur superstructures adsorbed on Ru(0001) have been widely studied in the past. However, much less effort has been devoted to determine their electronic properties. To understand the connection between structural and elec- tronic properties, we have carried out density functional theory periodic boundary calculations mimicking the four long range ordered sulfur superstructures identified experimentally by means of scanning tunneling microscopy (STM) techniques. Our simulations allow us to characterize the nature of the sulfur-Ru bond, the charge trans- fer between the Ru substrate and the sulfur adlayers, the interface states, as well as a parabolic state recently identified in STM experiments. A simple analysis, based on a one-dimensional model, reveals that this parabolic state is related to a potential well state, formed in the surface when the concentration of sulfur atoms is large enough to generate a new minimum in the surface potential

    Coverage evolution of the unoccupied Density of States in sulfur superstructures on Ru(0001)

    Get PDF
    Sulfur adsorbed on Ru(0001) presents a large number of ordered structures. This characteristic makes S/Ru(0001) the ideal system to investigate the effect of different periodicities on the electronic properties of interfaces. We have performed scanning tunneling microscopy/spectroscopy experiments and density functional theory calculations showing that a sulfur adlayer generates interface states inside the Γ directional gap of Ru(0001) and that the position of such states varies monotonically with sulfur coverage. This is the result of the interplay between band folding effects arising from the new periodicity of the system and electron localization on the sulfur monolayer. As a consequence, by varying the amount of sulfur in S/Ru(0001) one can control the electronic properties of these interfacial materials

    Treatment challenges in and outside a network setting: Head and neck cancers

    Get PDF
    Head and neck cancer (HNC) is a rare disease that can affect different sites and is characterized by variable incidence and 5-year survival rates across Europe. Multiple factors need to be considered when choosing the most appropriate treatment for HNC patients, such as age, comorbidities, social issues, and especially whether to prefer surgery or radiation-based protocols. Given the complexity of this scenario, the creation of a highly specialized multidisciplinary team is recommended to guarantee the best oncological outcome and prevent or adequately treat any adverse effect. Data from literature suggest that the multidisciplinary team-based approach is beneficial for HNC patients and lead to improved survival rates. This result is likely due to improved diagnostic and staging accuracy, a more efficacious therapeutic approach and enhanced communication across disciplines. Despite the benefit of MTD, it must be noted that this approach requires considerable time, effort and financial resources and is usually more frequent in highly organized and high-volume centers. Literature data on clinical research suggest that patients treated in high-accrual centers report better treatment outcomes compared to patients treated in low-volume centers, where a lower radiotherapy-compliance and worst overall survival have been reported. There is general agreement that treatment of rare cancers such as HNC should be concentrated in high volume, specialized and multidisciplinary centers. In order to achieve this goal, the creation of international collaboration network is fundamental. The European Reference Networks for example aim to create an international virtual advisory board, whose objectives are the exchange of expertise, training, clinical collaboration and the reduction of disparities and enhancement of rationalize migration across Europe. The purpose of our work is to review all aspects and challenges in and outside this network setting planned for the management of HNC patients

    Treatment challenges in and outside a specialist network setting: Pancreatic neuroendocrine tumours

    Get PDF
    Pancreatic Neuroendocrine Neoplasms comprise a group of rare tumours with special biology, an often indolent behaviour and particular diagnostic and therapeutic requirements. The specialized biochemical tests and radiological investigations, the complexity of surgical options and the variety of medical treatments that require individual tailoring, mandate a multidisciplinary approach that can be optimally achieved through an organized network. The present study describes currents concepts in the management of these tumours as well as an insight into the challenges of delivering the pathway in and outside a Network
    corecore