296 research outputs found
A new neotropical braconine (Hym., Braconidae) parasitic on Bruchidae (Col.)
Un genre nouveau, #Cyclaulacidea gen. n. (espèce-type #C. bruchivorus sp. n.) est décrit du Pérou et illustré. Il s'agit d'un parasitoïde des stades préimaginaux de la bruche #Caryoborus serripes, qui attaque les fruits comestibles de plusieurs palmiers appartenant au genre #Astrocaryum. Des données biologiques concernant les palmiers, la bruche et le parasitoïde sont fournies. (Résumé d'auteur
The GOODSTEP project: General Object-Oriented Database for Software Engineering Processes
The goal of the GOODSTEP project is to enhance and improve the functionality of a fully object-oriented database management system to yield a platform suited for applications such as software development environments (SDEs). The baseline of the project is the O2 database management system (DBMS). The O2 DBMS already includes many of the features regulated by SDEs. The project has identified enhancements to O2 in order to make it a real software engineering DBMS. These enhancements are essentially upgrades of the existing O2 functionality, and hence require relatively easy extensions to the O2 system. They have been developed in the early stages of the project and are now exploited and validated by a number of software engineering tools built on top of the enhanced O2 DBMS. To ease tool construction, the GOODSTEP platform encompasses tool generation capabilities which allow for generation of integrated graphical and textual tools from high-level specifications. In addition, the GOODSTEP platform provides a software process toolset which enables modeling, analysis and enaction of software processes and is also built on top of the extended O2 database. The GOODSTEP platform is to be validated using two CASE studies carried out to develop an airline application and a business application
Gene expression profiling of Spodoptera frugiperda hemocytes and fat body using cDNA microarray reveals polydnavirus-associated variations in lepidopteran host genes transcript levels
BACKGROUND: Genomic approaches provide unique opportunities to study interactions of insects with their pathogens. We developed a cDNA microarray to analyze the gene transcription profile of the lepidopteran pest Spodoptera frugiperda in response to injection of the polydnavirus HdIV associated with the ichneumonid wasp Hyposoter didymator. Polydnaviruses are associated with parasitic ichneumonoid wasps and are required for their development within the lepidopteran host, in which they act as potent immunosuppressive pathogens. In this study, we analyzed transcriptional variations in the two main effectors of the insect immune response, the hemocytes and the fat body, after injection of filter-purified HdIV. RESULTS: Results show that 24 hours post-injection, about 4% of the 1750 arrayed host genes display changes in their transcript levels with a large proportion (76%) showing a decrease. As a comparison, in S. frugiperda fat body, after injection of the pathogenic JcDNV densovirus, 8 genes display significant changes in their transcript level. They differ from the 7 affected by HdIV and, as opposed to HdIV injection, are all up-regulated. Interestingly, several of the genes that are modulated by HdIV injection have been shown to be involved in lepidopteran innate immunity. Levels of transcripts related to calreticulin, prophenoloxidase-activating enzyme, immulectin-2 and a novel lepidopteran scavenger receptor are decreased in hemocytes of HdIV-injected caterpillars. This was confirmed by quantitative RT-PCR analysis but not observed after injection of heat-inactivated HdIV. Conversely, an increased level of transcripts was found for a galactose-binding lectin and, surprisingly, for the prophenoloxidase subunits. The results obtained suggest that HdIV injection affects transcript levels of genes encoding different components of the host immune response (non-self recognition, humoral and cellular responses). CONCLUSION: This analysis of the host-polydnavirus interactions by a microarray approach indicates that the presence of HdIV induces, directly or indirectly, variations in transcript levels of specific host genes, changes that could be responsible in part for the alterations observed in the parasitized host physiology. Development of such global approaches will allow a better understanding of the strategies employed by parasites to manipulate their host physiology, and will permit the identification of potential targets of the immunosuppressive polydnaviruses
Increase of CXCR3+ T cells impairs Th17 cells recruitment in the small intestine mucosa through IFN-g and IL-18 during treated HIV-1 infection
The restoration of CD4+ T cells, especially T-helper type 17 (Th17) cells, remains incomplete in the gut mucosa of most human immunodeficiency virus type 1 (HIV-1)–infected individuals despite sustained antiretroviral therapy (ART). Herein, we report an increase in the absolute number of CXCR3+ T cells in the duodenal mucosa during ART. The frequencies of Th1 and CXCR3+ CD8+ T cells were increased and negatively correlated with CCL20 and CCL25 expression in the mucosa. In ex vivo analyses, we showed that interferon γ, the main cytokine produced by Th1 and effector CD8+ T cells, downregulates the expression of CCL20 and CCL25 by small intestine enterocytes, while it increases the expression of CXCL9/10/11, the ligands of CXCR3. Interleukin 18, a pro-Th1 cytokine produced by enterocytes, also contributes to the downregulation of CCL20 expression and increases interferon γ production by Th1 cells. This could perpetuate an amplification loop for CXCR3-driven Th1 and effector CD8+ T cells recruitment to the gut, while impairing Th17 cells homing through the CCR6-CCL20 axis in treated HIV-1–infected individuals
Hull Consistency Under Monotonicity
International audienceWe prove that hull consistency for a system of equations or inequalities can be achieved in polynomial time providing that the underlying functions are monotone with respect to each variable. This result holds including when variables have multiple occurrences in the expressions of the functions, which is usually a pitfall for interval-based contractors. For a given constraint, an optimal contractor can thus be enforced quickly under monotonicity and the practical significance of this theoretical result is illustrated on a simple example
HIV-1 Residual Viremia Correlates with Persistent T-Cell Activation in Poor Immunological Responders to Combination Antiretroviral Therapy
BACKGROUND:The clinical significance and cellular sources of residual human immunodeficiency virus type 1 (HIV-1) production despite suppressive combination antiretroviral therapy (cART) remain unclear and the effect of low-level viremia on T-cell homeostasis is still debated. METHODOLOGY/PRINCIPAL FINDINGS:We characterized the recently produced residual viruses in the plasma and short-lived blood monocytes of 23 patients with various immunological responses to sustained suppressive cART. We quantified the residual HIV-1 in the plasma below 50 copies/ml, and in the CD14(high) CD16(-) and CD16+ monocyte subsets sorted by flow cytometry, and predicted coreceptor usage by genotyping V3 env sequences. We detected residual viremia in the plasma of 8 of 10 patients with poor CD4+ T-cell reconstitution in response to cART and in only 5 of 13 patients with good CD4+ T-cell reconstitution. CXCR4-using viruses were frequent among the recently produced viruses in the plasma and in the main CD14(high) CD16(-) monocyte subset. Finally, the residual viremia was correlated with persistent CD4+ and CD8+ T-cell activation in patients with poor immune reconstitution. CONCLUSIONS:Low-level viremia could result from the release of archived viruses from cellular reservoirs and/or from ongoing virus replication in some patients. The compartmentalization of the viruses between the plasma and the blood monocytes suggests at least two origins of residual virus production during effective cART. CXCR4-using viruses might be produced preferentially in patients on cART. Our results also suggest that low-level HIV-1 production in some patients may contribute to persistent immune dysfunction despite cART
A novel microdeletion syndrome at 3q13.31 characterised by developmental delay, postnatal overgrowth, hypoplastic male genitals, and characteristic facial features
Item does not contain fulltextBACKGROUND: Congenital deletions affecting 3q11q23 have rarely been reported and only five cases have been molecularly characterised. Genotype-phenotype correlation has been hampered by the variable sizes and breakpoints of the deletions. In this study, 14 novel patients with deletions in 3q11q23 were investigated and compared with 13 previously reported patients. METHODS: Clinical data were collected from 14 novel patients that had been investigated by high resolution microarray techniques. Molecular investigation and updated clinical information of one cytogenetically previously reported patient were also included. RESULTS: The molecular investigation identified deletions in the region 3q12.3q21.3 with different boundaries and variable sizes. The smallest studied deletion was 580 kb, located in 3q13.31. Genotype-phenotype comparison in 24 patients sharing this shortest region of overlapping deletion revealed several common major characteristics including significant developmental delay, muscular hypotonia, a high arched palate, and recognisable facial features including a short philtrum and protruding lips. Abnormal genitalia were found in the majority of males, several having micropenis. Finally, a postnatal growth pattern above the mean was apparent. The 580 kb deleted region includes five RefSeq genes and two of them are strong candidate genes for the developmental delay: DRD3 and ZBTB20. CONCLUSION: A newly recognised 3q13.31 microdeletion syndrome is delineated which is of diagnostic and prognostic value. Furthermore, two genes are suggested to be responsible for the main phenotype.1 februari 201
HtrA1 Mediated Intracellular Effects on Tubulin Using a Polarized RPE Disease Model
Age-related macular degeneration (AMD) is the leading cause of irreversible vision loss. The protein HtrA1 is enriched in retinal pigment epithelial (RPE) cells isolated from AMD patients and in drusen deposits. However, it is poorly understood how increased levels of HtrA1 affect the physiological function of the RPE at the intracellular level. Here, we developed hfRPE (human fetal retinal pigment epithelial) cell culture model where cells fully differentiated into a polarized functional monolayer. In this model, we fine-tuned the cellular levels of HtrA1 by targeted overexpression. Our data show that HtrA1 enzymatic activity leads to intracellular degradation of tubulin with a corresponding reduction in the number of microtubules, and consequently to an altered mechanical cell phenotype. HtrA1 overexpression further leads to impaired apical processes and decreased phagocytosis, an essential function for photoreceptor survival. These cellular alterations correlate with the AMD phenotype and thus highlight HtrA1 as an intracellular target for therapeutic interventions towards AMD treatment
- …