782 research outputs found

    A new approach for the ortho-positronium lifetime determination in a vacuum cavity

    Full text link
    Currently, the experimental uncertainty for the determination of the ortho-positronium (o-Ps) decay rate is at 150 ppm precision; this is two orders of magnitude lower than the theoretical one, at 1 ppm level. Here we propose a new proof of concept experiment aiming for an accuracy of 100 ppm to be able to test the second-order correction in the calculations, which is 45(απ)2200\simeq 45\left(\frac{\alpha}{\pi}\right)^2\approx 200 ppm. The improvement relies on a new technique to confine the o-Ps in a vacuum cavity. Moreover, a new method was developed to subtract the time dependent pick-off annihilation rate of the fast backscattered positronium from the o-Ps decay rate prior to fitting the distribution. Therefore, this measurement will be free from the systematic errors present in the previous experiments. The same experimental setup developed for our recent search for invisible decay of ortho-positronium is being used. The precision will be limited by the statistical uncertainty, thus, if the expectations are fulfilled, this experiment could pave the way to reach the ultimate accuracy of a few ppm level to confirm or confront directly the higher order QED corrections. This will provide a sensitive test for new physics, e.g. a discrepancy between theoretical prediction and measurements could hint the existence of an hidden sector which is a possible dark matter candidate.Comment: 12 pages, 8 Figures, prepared for the proceedings of the PSAS2018 conference, Vienna (Austria

    Spatial confinement of muonium atoms

    Full text link
    We report the achievement of spatial confinement of muonium atoms (the bound state of a positive muon and an electron). Muonium emitted into vacuum from mesoporous silica reflects between two SiO2_2 confining surfaces separated by 1 mm. From the data, one can extract that the reflection probability on the confining surfaces kept at 100 K is about 90% and the reflection process is well described by a cosine law. This technique enables new experiments with this exotic atomic system and is a very important step towards a measurement of the 1S-2S transition frequency using continuous wave laser spectroscopy.Comment: 5 pages, 6 figure

    NASA advanced design program: Analysis, design, and construction of a solar powered aircraft

    Get PDF
    Increase in energy demands coupled with rapid depletion of natural energy resources have deemed solar energy as the most logical alternative source of power. The major objective of this project was to build a solar powered remotely controlled aircraft to demonstrate the feasibility of solar energy as an effective, alternate source of power. The final design was optimized for minimum weight and maximum strength of the structure. These design constraints necessitated a carbon fiber composite structure. Surya is a lightweight, durable aircraft capable of achieving level flight powered entirely by solar cells

    Intense beam of metastable Muonium

    Full text link
    Precision spectroscopy of the Muonium Lamb shift and fine structure requires a robust source of 2S Muonium. To date, the beam-foil technique is the only demonstrated method for creating such a beam in vacuum. Previous experiments using this technique were statistics limited, and new measurements would benefit tremendously from the efficient 2S production at a low energy muon (<20<20 keV) facility. Such a source of abundant low energy μ+\mathrm{\mu^+} has only become available in recent years, e.g. at the Low-Energy Muon beamline at the Paul Scherrer Institute. Using this source, we report on the successful creation of an intense, directed beam of metastable Muonium. We find that even though the theoretical Muonium fraction is maximal in the low energy range of 252-5 keV, scattering by the foil and transport characteristics of the beamline favor slightly higher μ+\mathrm{\mu^+} energies of 7107-10 keV. We estimate that an event detection rate of a few events per second for a future Lamb shift measurement is feasible, enabling an increase in precision by two orders of magnitude over previous determinations

    In vivo estimation of the shoulder joint center of rotation using magneto-inertial sensors: MRI-based accuracy and repeatability assessment

    Get PDF
    Background: The human gleno-humeral joint is normally represented as a spherical hinge and its center of rotation is used to construct humerus anatomical axes and as reduction point for the computation of the internal joint moments. The position of the gleno-humeral joint center (GHJC) can be estimated by recording ad hoc shoulder joint movement following a functional approach. In the last years, extensive research has been conducted to improve GHJC estimate as obtained from positioning systems such as stereo-photogrammetry or electromagnetic tracking. Conversely, despite the growing interest for wearable technologies in the field of human movement analysis, no studies investigated the problem of GHJC estimation using miniaturized magneto-inertial measurement units (MIMUs). The aim of this study was to evaluate both accuracy and precision of the GHJC estimation as obtained using a MIMU-based methodology and a functional approach. Methods: Five different functional methods were implemented and comparatively assessed under different experimental conditions (two types of shoulder motions: cross and star type motion; two joint velocities: ωmax = 90°/s, 180°/s; two ranges of motion: Θ = 45°, 90°). Validation was conducted on five healthy subjects and true GHJC locations were obtained using magnetic resonance imaging. Results: The best performing methods (NAP and SAC) showed an accuracy in the estimate of the GHJC between 20.6 and 21.9 mm and repeatability values between 9.4 and 10.4 mm. Methods performance did not show significant differences for the type of arm motion analyzed or a reduction of the arm angular velocity (180°/s and 90°/s). In addition, a reduction of the joint range of motion (90° and 45°) did not seem to influence significantly the GHJC position estimate except in a few subject-method combinations. Conclusions: MIMU-based functional methods can be used to estimate the GHJC position in vivo with errors of the same order of magnitude than those obtained using traditionally stereo-photogrammetric techniques. The methodology proposed seemed to be robust under different experimental conditions. The present paper was awarded as "SIAMOC Best Methodological Paper 2016"

    Drugs, sex, money and power: An HPV vaccine case study

    Full text link
    In this paper we compare the experiences of seven industrialized countries in considering approval and introduction of the world's first cervical cancer-preventing vaccine. Based on case studies, articles from public agencies, professional journals and newspapers we analyse the public debate about the vaccine, examine positions of stakeholder groups and their influence on the course and outcome of this policy process. The analysis shows that the countries considered here approved the vaccine and established related immunization programs exceptionally quickly even though there still exist many uncertainties as to the vaccine's long-term effectiveness, cost-effectiveness and safety. Some countries even bypassed established decision-making processes. The voice of special interest groups has been prominent in all countries, drawing on societal values and fears of the public. Even though positions differed among countries, all seven decided to publicly fund the vaccine, illustrating a widespread convergence of interests. It is important that decision-makers adhere to transparent and robust guidelines in making funding decisions in the future to avoid capture by vested interests and potentially negative effects on access and equity. © 2009 Elsevier Ireland Ltd. All rights reserved

    Positron annihilation in latex templated macroporous silica films: pore size and ortho-positronium escape

    Get PDF
    International audienceDepth profling of positron annihilation characteristics has been used to investigate the pore size distribution in macroporous PMMA latex templated SiO2 films deposited on glass or Si and prepared with 11-70% porosity. The correlation between the annihilation characteristics shows that o-Ps escape (re-emission) into vacuum occurs in all films with a porosity threshold that is pore size dependent. For 60 ± 2% porosity, the o-Ps reemission yield decreases from ~ 0:25 to ~ 0:11 as the pore size increases from 32 to 75 nm. The o-Ps reemission yield is shown to vary linearly with the specific surface area per mass unit and the slope is independent of pore size, 9:1±0:4 g cm-1. For 32 nm pores, the o-Ps annihilation lifetimes in the films, 17(2)ns and 106(5) ns, show that o-Ps annihilates from micropores with small effective size (1:4 ± 4 nm) and from macropores with large effective size (~ 32 nm). Above the porosity threshold, the o-Ps-escape model predicts the annihilation lifetime in the films to be 19±2 ns. Our results imply that o-Ps effciently detects the microporosity present in the silica walls. At low porosity, its capture into the micropores competes with its capture into the macropores. At higher porosity (when the distance between micropores and macropores become small), this capture into the micropores assists the capture into the macropores
    corecore