301 research outputs found
The economic impact of moderate stage Alzheimer's disease in Italy: Evidence from the UP-TECH randomized trial
Background: There is consensus that dementia is the most burdensome disease for modern societies. Few cost-of-illness studies examined the complexity of Alzheimer's disease (AD) burden, considering at the same time health and social care, cash allowances, informal care, and out-of-pocket expenditure by families. Methods: This is a comprehensive cost-of-illness study based on the baseline data from a randomized controlled trial (UP-TECH) enrolling 438 patients with moderate AD and their primary caregiver living in the community. Results: The societal burden of AD, composed of public, patient, and informal care costs, was about �20,000/yr. Out of this, the cost borne by the public sector was �4,534/yr. The main driver of public cost was the national cash-for-care allowance (�2,324/yr), followed by drug prescriptions (�1,402/yr). Out-of-pocket expenditure predominantly concerned the cost of private care workers. The value of informal care peaked at �13,590/yr. Socioeconomic factors do not influence AD public cost, but do affect the level of out-of-pocket expenditure. Conclusion: The burden of AD reflects the structure of Italian welfare. The families predominantly manage AD patients. The public expenditure is mostly for drugs and cash-for-care benefits. From a State perspective in the short term, the advantage of these care arrangements is clear, compared to the cost of residential care. However, if caregivers are not adequately supported, savings may be soon offset by higher risk of caregiver morbidity and mortality produced by high burden and stress. The study has been registered on the website www.clinicaltrials.org (Trial Registration number: NCT01700556). Copyright � International Psychogeriatric Association 2015
Prospective phase II single-center study of the safety of a single very high dose of liposomal amphotericin B for antifungal prophylaxis in patients with acute myeloid leukemia.
Some preclinical and pharmacokinetic studies suggested the variable safety and the potential efficacy of an antifungal prophylaxis with a single high dose of liposomal amphotericin B (L-AmB) in high-risk patients. An open-label, prospective study was conducted with 48 adults receiving induction chemotherapy for acute myeloid leukemia (AML). Patients received a single infusion of 15 mg/kg of body weight L-AmB and, eventually, a second dose after 15 days of persistent neutropenia. The primary objective was tolerability and safety. Efficacy was also evaluated as a secondary endpoint. A pharmacokinetic study was performed with 34 patients in order to evaluate any association of plasma L-AmB levels with toxicity and efficacy. Overall, only 6 patients (12.5%) reported Common Toxicity Criteria (CTC) grade 3 hypokalemia, which was corrected with potassium supplementation in all cases, and no patient developed clinically relevant nephrotoxicity. Mild infusion-related adverse events occurred after 6 of 53 (11.3%) total infusions, with permanent drug discontinuation in only one case. Proven invasive fungal disease (IFD) was diagnosed in 4 (8.3%) patients. The mean AmB plasma levels at 6 h, 24 h, and 7 days after L-AmB administration were 160, 49.5, and 1 mg/liter, respectively. The plasma AmB levels were higher than the mean values of the overall population in 3 patients who developed CTC grade 3 hypokalemia and did not significantly differ from the mean values of the overall population in 3 patients who developed IFD. Our experience demonstrates the feasibility and safety of a single 15-mg/kg L-AmB dose as antifungal prophylaxis in AML patients undergoing induction chemotherapy
Investigating Macrophages Plasticity Following Tumour–Immune Interactions During Oncolytic Therapies
Over the last few years, oncolytic virus therapy has been recognised as a promising approach in cancer treatment, due to the potential of these viruses to induce systemic anti-tumour immunity and selectively killing tumour cells. However, the effectiveness of these viruses depends significantly on their interactions with the host immune responses, both innate (e.g., macrophages, which accumulate in high numbers inside solid tumours) and adaptive (e.g., CD8+ T cells). In this article, we consider a mathematical approach to investigate the possible outcomes of the complex interactions between two extreme types of macrophages (M1 and M2 cells), effector CD8+ T cells and an oncolytic Vesicular Stomatitis Virus (VSV), on the growth/elimination of B16F10 melanoma. We discuss, in terms of VSV, CD8+ and macrophages levels, two different types of immune responses which could ensure tumour control and eventual elimination. We show that both innate and adaptive anti-tumour immune responses, as well as the oncolytic virus, could be very important in delaying tumour relapse and eventually eliminating the tumour. Overall this study supports the use mathematical modelling to increase our understanding of the complex immune interaction following oncolytic virotherapies. However, the complexity of the model combined with a lack of sufficient data for model parametrisation has an impact on the possibility of making quantitative predictions
Ecodialysis: first strategies to limit damages and reduce costs
In the medical field, the attention to the environmental impact of industrial processes and products is still limited. In recent years there has been an increased sensitivity towards the environment; meanwhile, the economic burden of hazardous waste disposal is becoming evident. Dialysis is a "big producer" of waste and it has been estimated that disposal costs can be up to 10-40% of the cost of disposables. So there are several reasons of interest on "ecodialysis": the high amount of waste defined as "potentially hazardous", which requires a very expensive management and the recyclability potential of the non-contaminated waste, that has not yet been fully explored in dialysis. This primary study has been performed in collaboration with the Politecnico di Torino. Its aim has been to define a schedule of activities by a few brainstorming sessions. This schedule is to be readily performed or it should be developed in detail to optimize, by reducing and recycling, the waste production during the dialysis session. The discussion identified seven basic points for the eco-sustainability of haemodialysis to: [1] reduce packaging; [2] facilitate separation of materials, and [3] their discharge; [4] differentiate materials; [5] clearly highlight the potentially hazardous materials; [6] improve the recyclability of plastic products; [7] propose a path of recovery and reuse. Although a full optimization requires a close cooperation with the manufacturers and is achievable only in the long term, the reduction of one pound of potentially contaminated materials could presently lead, on a national scale, to a saving of several million euros, which can be better employed in investments to improve our treatments
Diagnosis and treatment of a rare case of adenomatoid odontogenic tumor in a young patient affected by attenuated familial adenomatosis polyposis (aFAP): case report and 5 year follow-up
Abstract. -BACKGROUND: The adenomatoid odontogenic tumor (AOT) is a quite rare odontogenic tumor, with an incidence rate of approximately 12 cases/year worldwide. Attenuated familial adenomatous polyposis (aFAP) is a syndrome characterized by a significant risk to develop colon cancer. The aim of the paper is to describe a case never reported before in the literature: an AOT developed in a patient with aFAP; moreover, we want to show how it appears 5 years after surgery and after the regeneration of the eroded bone tissue, using the PlateletRich Fibrin (PRF) as filling material. CASE PRESENTATION: We report the case of a female 18 years old patient, affected by aFAP; she comes to us with a swelling on the right hemi-face. We performed several radiological exams, and they showed a neoformation approximately 2 cm in diameter: this neoformation packed the upper right canine, therefore, we hypothesized a dentigerous cyst. We decided to proceed to open biopsy and enucleation of the lesion. An intra-operative endodontic treatment on the adjacent partially resorbed teeth was also performed. Finally, we performed a reconstruction of eroded bone tissue, by use of Platelet-Rich Fibrin as filling material. The samples fixed and embedded in paraffin have led to the diagnosis of AOT. After 5 years from the surgery, we did not find any clear sign of relapse, in addition, the use of PRF has favored an optimal osteogenesis at the surgical site. The onset of an AOT is quite rare in the general population, and this rarity could represent a critical point for its diagnosis; AOT onset in a patient with aFAP is a finding that could represent a new element of diagnosis and, therefore, the starting point to perform a more effective therapy
The design of macromolecular crystallography diffraction experiments
Thoughts about the decisions made in designing macromolecular X-ray crystallography experiments at synchrotron beamlines are presented
Escape of HIV-1-Infected Dendritic Cells from TRAIL-Mediated NK Cell Cytotoxicity during NK-DC Cross-Talk—A Pivotal Role of HMGB1
Early stages of Human Immunodeficiency Virus-1 (HIV-1) infection are associated with local recruitment and activation of important effectors of innate immunity, i.e. natural killer (NK) cells and dendritic cells (DCs). Immature DCs (iDCs) capture HIV-1 through specific receptors and can disseminate the infection to lymphoid tissues following their migration, which is associated to a maturation process. This process is dependent on NK cells, whose role is to keep in check the quality and the quantity of DCs undergoing maturation. If DC maturation is inappropriate, NK cells will kill them (“editing process”) at sites of tissue inflammation, thus optimizing the adaptive immunity. In the context of a viral infection, NK-dependent killing of infected-DCs is a crucial event required for early elimination of infected target cells. Here, we report that NK-mediated editing of iDCs is impaired if DCs are infected with HIV-1. We first addressed the question of the mechanisms involved in iDC editing, and we show that cognate NK-iDC interaction triggers apoptosis via the TNF-related apoptosis-inducing ligand (TRAIL)-Death Receptor 4 (DR4) pathway and not via the perforin pathway. Nevertheless, once infected with HIV-1, DCHIV become resistant to NK-induced TRAIL-mediated apoptosis. This resistance occurs despite normal amounts of TRAIL released by NK cells and comparable DR4 expression on DCHIV. The escape of DCHIV from NK killing is due to the upregulation of two anti-apoptotic molecules, the cellular-Flice like inhibitory protein (c-FLIP) and the cellular inhibitor of apoptosis 2 (c-IAP2), induced by NK-DCHIV cognate interaction. High-mobility group box 1 (HMGB1), an alarmin and a key mediator of NK-DC cross-talk, was found to play a pivotal role in NK-dependent upregulation of c-FLIP and c-IAP2 in DCHIV. Finally, we demonstrate that restoration of DCHIV susceptibility to NK-induced TRAIL killing can be obtained either by silencing c-FLIP and c-IAP2 by specific siRNA, or by inhibiting HMGB1 with blocking antibodies or glycyrrhizin, arguing for a key role of HMGB1 in TRAIL resistance and DCHIV survival. These findings provide evidence for a new strategy developed by HIV to escape immune attack, they challenge the question of the involvement of HMGB1 in the establishment of viral reservoirs in DCs, and they identify potential therapeutic targets to eliminate infected DCs
PINK1 heterozygous rare variants: Prevalence, significance and phenotypic spectrum
Heterozygous rare variants in the PINK1 gene, as well as in other genes causing autosomal recessive parkinsonism, have been reported both in patients and healthy controls. Their pathogenic significance is uncertain, but they have been suggested to represent risk factors to develop Parkinson disease (PD). The few large studies that assessed the frequency of PINK1 heterozygotes in cases and controls yielded controversial results, and the phenotypic spectrum is largely unknown. We retrospectively analyzed the occurrence of PINK1 heterozygous rare variants in over 1100 sporadic and familial patients of all onset ages and in 400 controls. Twenty patients and 6 controls were heterozygous, with frequencies (1.8% vs. 1.5%) not significantly different in the two groups. Clinical features of heterozygotes were indistinguishable to those of wild-type patients, with mean disease onset 10 years later than in carriers of two mutations but worse disease progression. A meta-analysis indicated that, in PINK1 heterozygotes, the PD risk is only slightly increased with a non significant odds ratio of 1.62. These findings suggest that PINK1 heterozygous rare variants play only a minor susceptibility role in the context of a multifactorial model of PD. Hence, their significance should be kept distinct from that of homozygous/compound heterozygous mutations, that cause parkinsonism inherited in a mendelian fashion
AhR controls redox homeostasis and shapes the tumor microenvironment in BRCA1-associated breast cancer
Cancer cells have higher reactive oxygen species (ROS) than normal cells, due to genetic and metabolic alterations. An emerging scenario is that cancer cells increase ROS to activate protumorigenic signaling while activating antioxidant pathways to maintain redox homeostasis. Here we show that, in basal-like and BRCA1-related breast cancer (BC), ROS levels correlate with the expression and activity of the transcription factor aryl hydrocarbon receptor (AhR). Mechanistically, ROS triggers AhR nuclear accumulation and activation to promote the transcription of both antioxidant enzymes and the epidermal growth factor receptor (EGFR) ligand, amphiregulin (AREG). In a mouse model of BRCA1-related BC, cancer-associated AhR and AREG control tumor growth and production of chemokines to attract monocytes and activate proangiogenic function of macrophages in the tumor microenvironment. Interestingly, the expression of these chemokines as well as infiltration of monocyte-lineage cells (monocyte and macrophages) positively correlated with ROS levels in basal-like BC. These data support the existence of a coordinated link between cancer-intrinsic ROS regulation and the features of tumor microenvironment. Therapeutically, chemical inhibition of AhR activity sensitizes human BC models to Erlotinib, a selective EGFR tyrosine kinase inhibitor, suggesting a promising combinatorial anticancer effect of AhR and EGFR pathway inhibition. Thus, AhR represents an attractive target to inhibit redox homeostasis and modulate the tumor promoting microenvironment of basal-like and BRCA1-associated BC
Cognitive and affective changes in mild to moderate Alzheimer's disease patients undergoing switch of cholinesterase inhibitors: a 6-month observational study.
- …
