23 research outputs found
The Ig heavy chain protein but not its message controls early B cell development
Development of progenitor B cells (ProB cells) into precursor B cells (PreB cells) is dictated by immunoglobulin heavy chain checkpoint (IgHCC), where the IgHC encoded by a productively rearranged Igh allele assembles into a PreB cell receptor complex (PreBCR) to generate signals to initiate this transition and suppressing antigen receptor gene recombination, ensuring that only one productive Igh allele is expressed, a phenomenon known as Igh allelic exclusion. In contrast to a productively rearranged Igh allele, the Igh messenger RNA (mRNA) (IgHR) from a nonproductively rearranged Igh allele is degraded by nonsense-mediated decay (NMD). This fact prohibited firm conclusions regarding the contribution of stable IgHR to the molecular and developmental changes associated with the IgHCC. This point was addressed by generating the Igh Ter5HâTM mouse model from Igh Ter5H mice having a premature termination codon at position +5 in leader exon of Igh Ter5H allele. This prohibited NMD, and the lack of a transmembrane region (âTM) prevented the formation of any signaling-competent PreBCR complexes that may arise as a result of read-through translation across premature Ter5 stop codon. A highly sensitive sandwich Western blot revealed read-through translation of Igh Ter5H message, indicating that previous conclusions regarding a role of IgHR in establishing allelic exclusion requires further exploration. As determined by RNA sequencing (RNA-Seq), this low amount of IgHC sufficed to initiate PreB cell markers normally associated with PreBCR signaling. In contrast, the Igh Ter5HâTM knock-in allele, which generated stable IgHR but no detectable IgHC, failed to induce PreB development. Our data indicate that the IgHCC is controlled at the level of IgHC and not IgHR expression
An end-to-end geometric deficiencies elimination algorithm for 3D meshes
The 3D mesh is an important representation of geometric data. It is widely used in computer graphics and has attracted more attention in computer vision community recently. However, in the generation of mesh data, geometric deficiencies (e.g., duplicate elements, degenerate faces, isolated vertices, self-intersection, and inner faces) are unavoidable. Geometric deficiencies may violate the topology structure of an object and affect the use of 3D meshes. In this paper, we propose an end-to-end algorithm to eliminate geometric deficiencies effectively and efficiently for 3D meshes in a specific and reasonable order. Specifically, duplicate elements can be first eliminated by assessing appear times of vertices or faces. Then, degenerate faces can be removed according to the outer product of two edges. Next, since isolated vertices do not appear in any face vertices, they can be deleted directly. Afterward, self-intersecting faces are detected and remeshed by using an AABB tree. Finally, we detect and remove an inner face according to whether multiple random rays shooted from a face can reach infinity. Experiments on ModelNet40 dataset illustrate that our method can eliminate the deficiencies of 3D meshes thoroughly.Green Open Access added to TU Delft Institutional Repository 'You share, we take care!' - Taverne project https://www.openaccess.nl/en/you-share-we-take-care Otherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.Urban Data Scienc
sj-docx-1-asm-10.1177_10731911241241495 â Supplemental material for Interpersonal Problem Profiles of Personality and Psychopathology Constructs in Chinese Undergraduates and Offenders
Supplemental material, sj-docx-1-asm-10.1177_10731911241241495 for Interpersonal Problem Profiles of Personality and Psychopathology Constructs in Chinese Undergraduates and Offenders by Yuping Liu, Christopher J. Hopwood, Aaron L. Pincus, Bingtao Zhou, Jiali Yang, Shuliang Bai and Bo Yang in Assessment</p