408 research outputs found
3D Capturing Performances of Low-Cost Range Sensors for Mass-Market Applications
Since the advent of the first Kinect as motion controller device for the Microsoft XBOX platform (November 2010), several similar active and low-cost range sensing devices have been introduced on the mass-market for several purposes, including gesture based interfaces, 3D multimedia interaction, robot navigation, finger tracking, 3D body scanning for garment design and proximity sensors for automotive. However, given their capability to generate a real time stream of range images, these has been used in some projects also as general purpose range devices, with performances that for some applications might be satisfying. This paper shows the working principle of the various devices, analyzing them in terms of systematic errors and random errors for exploring the applicability of them in standard 3D capturing problems. Five actual devices have been tested featuring three different technologies: i) Kinect V1 by Microsoft, Structure Sensor by Occipital, and Xtion PRO by ASUS, all based on different implementations of the Primesense sensor; ii) F200 by Intel/Creative, implementing the Realsense pattern projection technology; Kinect V2 by Microsoft, equipped with the Canesta TOF Camera. A critical analysis of the results tries first of all to compare them, and secondarily to focus the range of applications for which such devices could actually work as a viable solution
Interdisciplinary Data Fusion for Diachronic 3D Reconstruction of Historic Sites
In recent decades, 3D reconstruction has progressively become a tool to show archaeological and architectural monuments in their current state, presumed past aspect and to predict their future evolution. The 3D representations trough time can be useful in order to study and preserve the memory of Cultural Heritage and to plan maintenance and promotion of the historical sites. This paper represent a case study, at architectonic and urbanistic scale, based on methodological approach for CH time-varying representations proposed by JPI-CH European Project called Cultural Heritage Through Time (CHT2)
Interaction-range effects and universality in the BCS-BEC crossover of spin-orbit-coupled Fermi gases
We explore the evolution of an ultracold quantum gas of interacting fermions crossing from a Bardeen-Cooper-Schrieffer (BCS) superfluidity to a Bose-Einstein condensation (BEC) of molecular bosons in the presence of a tunable-range interaction among the fermions and of an artificial magnetic field, which can be used to simulate a pseudo-spin-orbit coupling (SOC) and to produce topological states. We find that the crossover is affected by a competition between the finite range of the interaction and the SOC and that the threshold λB for the topological transition is affected by the interactions only in the small pair size, BEC-like, regime. Below λB, we find persistence of universal behavior in the critical temperature, chemical potential, and condensate fraction, provided that the pair correlation length is used as a driving parameter. Above threshold, universality is lost in the regime of large pair sizes. Here, the limiting ground state departs from a weakly interacting BCS-like one so that a different description is required. Our results can be relevant in view of current experiments with cold atoms in optical cavities, where tunable-range effective atomic interactions can be engineered
Segmentation of 3D Models for Cultural Heritage Structural Analysis – Some Critical Issues
Cultural Heritage documentation and preservation has become a fundamental concern in this historical period. 3D modelling offers a perfect aid to record ancient buildings and artefacts and can be used as a valid starting point for restoration, conservation and structural analysis, which can be performed by using Finite Element Methods (FEA). The models derived from reality-based techniques, made up of the exterior surfaces of the objects captured at high resolution, are - for this reason - made of millions of polygons. Such meshes are not directly usable in structural analysis packages and need to be properly pre-processed in order to be transformed in volumetric meshes suitable for FEA. In addition, dealing with ancient objects, a proper segmentation of 3D volumetric models is needed to analyse the behaviour of the structure with the most suitable level of detail for the different sections of the structure under analysis. Segmentation of 3D models is still an open issue, especially when dealing with ancient, complicated and geometrically complex objects that imply the presence of anomalies and gaps, due to environmental agents such as earthquakes, pollution, wind and rain, or human factors. The aims of this paper is to critically analyse some of the different methodologies and algorithms available to segment a 3D point cloud or a mesh, identifying difficulties and problems by showing examples on different structures
DIGITAL CONTENTS FOR ENHANCING THE COMMUNICATION OF MUSEUM EXHIBITION: THE PERVIVAL PROJECT
Abstract. The PERVIVAL project aims at developing an interactive system with the preliminary function of explaining a complex museum collection in a simple and immediate way and allowing the visitor to better understand the museum collection he is about to see. In particular, the interactive system aims at enhancing the understanding of the collections of funeral furnishings of Egyptians, which are characterized by a multiplicity of objects of rich symbolism and connected to each other through complex funeral rituals. The idea is to explain the religious creed of ancient Egyptians through the objects placed in the tomb, having in this way a double benefit: enlightening the rituals and placing the objects back in their primary function. In this way, the knowledge of the visitor is not only enlarged through the description of something that is described on papyruses or inscriptions (hence, not comprehensible) but also the proper function of every single object will be explained through the connection among them, as a function of amulets or goods necessary to travel through the World of the Dead. The connection between the different objects allows a much greater understanding of the exposed collection that would be perceived in this way not as a set of single isolated pieces, but as a harmonious set of complementary elements between they represent a specific historical-cultural context.</p
Integral method coefficients for the ring-core technique to evaluate non-uniform residual stresses
The ring-core technique allows for the determination of non-uniform residual stresses from the surface up to relatively higher depths as compared to the hole-drilling technique. The integral method, which is usually applied to hole-drilling, can also be used for elaborating the results of the ring-core test since these two experimental techniques share the axisymmetric geometry and the 0°–45°–90° layout of the strain gage rosette. The aim of this article is to provide accurate coefficients which can be used for evaluating the residual stress distribution by the ring-core integral method. The coefficients have been obtained by elaborating the results of a very refined plane harmonic axisymmetric finite element model and verified with an independent three-dimensional model. The coefficients for small depth steps were initially provided, and then the values for multiple integer step depths were also derived by manipulating the high-resolution coefficient matrices, thus showing how the present results can be practically used for obtaining the residual stresses according to different depth sequences, even non-uniform. This analysis also allowed the evaluation of the eccentricity effect which turned out to be negligible due to the symmetry of the problem. An applicative example was reported in which the input of the experimentally measured relaxed strains was elaborated with different depth resolutions, and the obtained residual stress distributions were compared
3D Visualization of Cultural Heritage Artefacts with Virtual Reality devices
Although 3D models are useful to preserve the information about historical artefacts, the potential of these digital contents are not fully accomplished until they are not used to interactively communicate their significance to non-specialists. Starting from this consideration, a new way to provide museum visitors with more information was investigated. The research is aimed at valorising and making more accessible the Egyptian funeral objects exhibited in the Sforza Castle in Milan. The results of the research will be used for the renewal of the current exhibition, at the Archaeological Museum in Milan, by making it more attractive. A 3D virtual interactive scenario regarding the “path of the dead”, an important ritual in ancient Egypt, was realized to augment the experience and the comprehension of the public through interactivity. Four important artefacts were considered for this scope: two ushabty, a wooden sarcophagus and a heart scarab. The scenario was realized by integrating low-cost Virtual Reality technologies, as the Oculus Rift DK2 and the Leap Motion controller, and implementing a specific software by using Unity. The 3D models were implemented by adding responsive points of interest in relation to important symbols or features of the artefact. This allows highlighting single parts of the artefact in order to better identify the hieroglyphs and provide their translation. The paper describes the process for optimizing the 3D models, the implementation of the interactive scenario and the results of some test that have been carried out in the lab
3D Visualization of Cultural Heritage Artefacts with Virtual Reality devices
Although 3D models are useful to preserve the information about historical artefacts, the potential of these digital contents are not fully accomplished until they are not used to interactively communicate their significance to non-specialists. Starting from this consideration, a new way to provide museum visitors with more information was investigated. The research is aimed at valorising and making more accessible the Egyptian funeral objects exhibited in the Sforza Castle in Milan. The results of the research will be used for the renewal of the current exhibition, at the Archaeological Museum in Milan, by making it more attractive. A 3D virtual interactive scenario regarding the "path of the dead", an important ritual in ancient Egypt, was realized to augment the experience and the comprehension of the public through interactivity. Four important artefacts were considered for this scope: two ushabty, a wooden sarcophagus and a heart scarab. The scenario was realized by integrating low-cost Virtual Reality technologies, as the Oculus Rift DK2 and the Leap Motion controller, and implementing a specific software by using Unity. The 3D models were implemented by adding responsive points of interest in relation to important symbols or features of the artefact. This allows highlighting single parts of the artefact in order to better identify the hieroglyphs and provide their translation. The paper describes the process for optimizing the 3D models, the implementation of the interactive scenario and the results of some test that have been carried out in the lab
The Virtual Reconstruction of the Aesculapius and Hygeia Statues from the Sanctuary of Isis in Lilybaeum: Methods and Tools for Ancient Sculptures’ Enhancement
Thanks to recent technological developments in 3D surveys, computer graphics and virtual reality, new scenarios have been opened for the documentation and enhancement of ancient sculptures. When not totally preserved, sculptures can be digitally reproduced, modified and visualized to simulate their physical or virtual reconstruction in a non-invasive way for specialists or for dissemination aims. The virtual sculptural reconstruction process starts usually from the 3D survey of real fragments, and then continues by integrating missing parts with 3D modelling techniques by means of source evaluation. Along with primary data sources (reality-based model), secondary data sources (photos, drawings and 3D models of similar sculptures) can be directly used in the reconstruction process. This approach has a double advantage of making the reconstruction activities easier and less arbitrary, contributing to a decrease in the degree of uncertainty for the sculptural reconstruction work, also thanks to many iconographic comparisons to ancient copies. Moreover, virtual reconstruction can be easily visualized alongside a scalable rendering system using open-source Web3D apps and platforms, accessing information, 3D models and descriptions in order to enhance the experience of artworks. Inspecting theoretical and technical approaches, this work aims at establishing how primary and secondary data sources can be effectively used in sculptural reconstruction workflows, and how 3D outputs can be applied to implement digital sculptural heritage exploitation for museums and cultural institutions. The statues of Aesculapius and Hygeia from the sanctuary of Isis in Lilybaeum (Marsala, Italy) were chosen as a case study
- …