64 research outputs found
Numerical solution of exterior Maxwell problems by Galerkin BEM and Runge-Kutta convolution quadrature
In this paper we consider time-dependent electromagnetic scattering problems from conducting objects. We discretize the time-domain electric field integral equation using Runge-Kutta convolution quadrature in time and a Galerkin method in space. We analyze the involved operators in the Laplace domain and obtain convergence results for the fully discrete scheme. Numerical experiments indicate the sharpness of the theoretical estimate
Low rank approximation of multidimensional data
In the last decades, numerical simulation has experienced tremendous improvements driven by massive growth of computing power. Exascale computing has been achieved this year and will allow solving ever more complex problems. But such large systems produce colossal amounts of data which leads to its own difficulties. Moreover, many engineering problems such as multiphysics or optimisation and control, require far more power that any computer architecture could achieve within the current scientific computing paradigm. In this chapter, we propose to shift the paradigm in order to break the curse of dimensionality by introducing decomposition to reduced data. We present an extended review of data reduction techniques and intends to bridge between applied mathematics
community and the computational mechanics one. The chapter is organized into two parts. In the first one bivariate separation is studied, including discussions on the equivalence of proper orthogonal decomposition (POD, continuous framework) and singular value decomposition (SVD, discrete matrices). Then, in the second part, a wide review of tensor formats and their approximation is proposed. Such work has already been provided in
the literature but either on separate papers or into a pure applied
mathematics framework. Here, we offer to the data enthusiast scientist a description of Canonical, Tucker, Hierarchical and Tensor train formats including their approximation algorithms. When it is possible, a careful analysis of the link between continuous and discrete methods will be performed.IV Research and Transfer Plan of the University of SevillaInstitut CarnotJunta de AndalucíaIDEX program of the University of Bordeau
Comparison of some Reduced Representation Approximations
In the field of numerical approximation, specialists considering highly
complex problems have recently proposed various ways to simplify their
underlying problems. In this field, depending on the problem they were tackling
and the community that are at work, different approaches have been developed
with some success and have even gained some maturity, the applications can now
be applied to information analysis or for numerical simulation of PDE's. At
this point, a crossed analysis and effort for understanding the similarities
and the differences between these approaches that found their starting points
in different backgrounds is of interest. It is the purpose of this paper to
contribute to this effort by comparing some constructive reduced
representations of complex functions. We present here in full details the
Adaptive Cross Approximation (ACA) and the Empirical Interpolation Method (EIM)
together with other approaches that enter in the same category
Geometric methods on low-rank matrix and tensor manifolds
In this chapter we present numerical methods for low-rank matrix and tensor problems that explicitly make use of the geometry of rank constrained matrix and tensor spaces. We focus on two types of problems: The first are optimization problems, like matrix and tensor completion, solving linear systems and eigenvalue problems. Such problems can be solved by numerical optimization for manifolds, called Riemannian optimization methods. We will explain the basic elements of differential geometry in order to apply such methods efficiently to rank constrained matrix and tensor spaces. The second type of problem is ordinary differential equations, defined on matrix and tensor spaces. We show how their solution can be approximated by the dynamical low-rank principle, and discuss several numerical integrators that rely in an essential way on geometric properties that are characteristic to sets of low rank matrices and tensors
Resource discovery for distributed computing systems: A comprehensive survey
Large-scale distributed computing environments provide a vast amount of heterogeneous computing resources from different sources for resource sharing and distributed computing. Discovering appropriate resources in such environments is a challenge which involves several different subjects. In this paper, we provide an investigation on the current state of resource discovery protocols, mechanisms, and platforms for large-scale distributed environments, focusing on the design aspects. We classify all related aspects, general steps, and requirements to construct a novel resource discovery solution in three categories consisting of structures, methods, and issues. Accordingly, we review the literature, analyzing various aspects for each category
Numerical Solution of Exterior Maxwell Problems by Galerkin BEM and Runge-Kutta Convolution Quadrature
In this paper we consider time-dependent electromagnetic scattering problems from conducting objects. We discretize the time-domain electric field integral equation using Runge-Kutta convolution quadrature in time and a Galerkin method in space. We analyze the involved operators in the Laplace domain and obtain convergence results for the fully discrete scheme. Numerical experiments indicate the sharpness of the theoretical estimates
- …