705 research outputs found

    Sodium-coupled neutral amino acid transporter 1 (SNAT1) modulates L-citrulline transport and nitric oxide (NO) signaling in piglet pulmonary arterial endothelial cells

    Get PDF
    Rationale There is evidence that impairments in nitric oxide (NO) signaling contribute to chronic hypoxia-induced pulmonary hypertension. The L-arginine-NO precursor, L-citrulline, has been shown to ameliorate pulmonary hypertension. Sodium-coupled neutral amino acid transporters (SNATs) are involved in the transport of L-citrulline into pulmonary arterial endothelial cells (PAECs). The functional link between the SNATs, L-citrulline, and NO signaling has not yet been explored. Objective We tested the hypothesis that changes in SNAT1 expression and transport function regulate NO production by modulating eNOS coupling in newborn piglet PAECs. Methods and Results A silencing RNA (siRNA) technique was used to assess the contribution of SNAT1 to NO production and eNOS coupling (eNOS dimer-to-monomer ratios) in PAECs from newborn piglets cultured under normoxic and hypoxic conditions in the presence and absence of L-citrulline. SNAT1 siRNA reduced basal NO production in normoxic PAECs and prevented L-citrulline-induced elevations in NO production in both normoxic and hypoxic PAECs. SNAT1 siRNA reduced basal eNOS dimer-to-monomer ratios in normoxic PAECs and prevented L-citrulline-induced increases in eNOS dimer-to-monomer ratios in hypoxic PAECs. Conclusions SNAT1 mediated L-citrulline transport modulates eNOS coupling and thus regulates NO production in hypoxic PAECs from newborn piglets. Strategies that increase SNAT1-mediated transport and supply of L-citrulline may serve as novel therapeutic approaches to enhance NO production in patients with pulmonary vascular disease

    Free radical formation in cerebral cortical astrocytes in culture induced by methylmercury

    Get PDF
    Abstract Oxidative stress has been implicated in neurotoxic damage associated with various metals, including methylmercury (MeHg). Although the mechanism(s) of MeHg-induced neurotoxicity remains unclear, evidence supports a mediatory role for astrocytes, a cell type that preferentially accumulates MeHg. Using scanning confocal microscopy (LSCM), the present study was undertaken to examine the role of astrocytes as the site of reactive oxygen species (ROS). Three redox-sensitive fluorescent probes were used for ROS analysis, (a) CM-H 2 DCFDA (chloromethyl derivative of dichlorodihydrofluorescein diacetate), a probe for intracellular hydrogen peroxide (H 2 O 2 ); (b) hydroethidine (HETH), a probe for superoxide anion (ÁO 2 À ), and (c) CM-H 2 XRos (chloromethyl derivative of dihydro X-rosamine), and a probe that is selective for mitochondrial reactive oxygen intermediates. Astrocytes were treated with 10 AM MeHg for 30 min, following which the various fluorescent probes were added; 20 min later LSCM images were collected. Astrocytes loaded with CM-H 2 DCFDA and HE demonstrated a significant MeHg-induced increase in fluorescence intensity indicative of increased intracellular H 2 O 2 and ÁO 2 À , respectively. Similar results were obtained with the mitotracker dye, CM-H 2 XRos. Additionally, exposure of astrocytes for 24 h to 100 AM buthionine-Lsulfoxane (BSO), a glutathione (GSH) synthesis inhibitor, caused a significant increase in ROS formation. Furthermore, BSO pretreatment significantly enhanced the MeHg-induced formation of ÁO 2 À , indicating an important role for GSH in the maintenance of optimal cellular redox status. Time-course experiments performed in the simultaneous presence of CM-H 2 XRos and CM-H 2 DCFDA demonstrated that the MeHg-induced CM-H 2 XRos fluorescence changes preceded those of CM-H 2 DCFDA, suggesting that the mitochondria represent an early primary site for ROS formation. Taken together, these studies illustrate that MeHg induces the generation of astrocyte-derived ROS and support a role for astrocytic ROS in MeHg-associated neurotoxic damage.

    Unmasking silent neurotoxicity following developmental exposure to environmental toxicants

    Get PDF
    AbstractSilent neurotoxicity, a term introduced approximately 25years ago, is defined as a persistent change to the nervous system that does not manifest as overt evidence of toxicity (i.e. it remains clinically unapparent) unless unmasked by experimental or natural processes. Silent neurotoxicants can be challenging for risk assessors, as the multifactorial experiments needed to reveal their effects are seldom conducted, and they are not addressed by current study design guidelines. This topic was the focus of a symposium addressing the interpretation and use of silent neurotoxicity data in human health risk assessments of environmental toxicants at the annual meeting of the Developmental Neurotoxicology Society (previously the Neurobehavioral Teratology Society) on June 30th, 2014. Several factors important to the design and interpretation of studies assessing the potential for silent neurotoxicity were discussed by the panelists and audience members. Silent neurotoxicity was demonstrated to be highly specific to the characteristics of the animals being examined, the unmasking agent tested, and the behavioral endpoint(s) evaluated. Overall, the experimental examples presented highlighted a need to consider common adverse outcomes and common biological targets for chemical and non-chemical stressors, particularly when the exposure and stressors are known to co-occur. Risk assessors could improve the evaluation of silent neurotoxicants in assessments through specific steps from researchers, including experiments to reveal the molecular targets and mechanisms that may result in specific types of silent neurotoxicity, and experiments with complex challenges reminiscent of the human situation

    The role for saxagliptin within the management of type 2 diabetes mellitus: an update from the 2010 European Association for the Study of Diabetes (EASD) 46th annual meeting and the American Diabetes Association (ADA) 70th scientific session

    Get PDF
    Saxagliptin is a potent, selective DPP4 inhibitor. Highlights from abstracts presented at the 2010 meetings of the European Association for the Study of Diabetes and the American Diabetes Association include studies and analyses that shed light on the promising role for saxagliptin within the management of type 2 diabetes mellitus. Data show that saxagliptin combination therapy improves HbA1c levels compared with placebo, particularly in patients with high HbA1c at baseline, long duration of disease, low baseline creatinine clearance, and low homeostasis model assessment 2 β-cell function at baseline. These efficacy benefits are achieved without any increase in hypoglycemia or other adverse events. The study results also show that the saxagliptin plus metformin combination is a good candidate for initial therapy in drug-naïve patients treated for as long as 72 weeks. Survey data presented confirm that hypoglycemia (and fear of hypoglycemia) is a barrier to patients' acceptance of diabetes treatment, limiting its efficacy. Therefore, therapies such as saxagliptin that have a low risk of hypoglycemia may be more acceptable to patients in helping them to achieve glycemic control and to optimize their quality of life. In patients with renal impairment, for whom metformin is contraindicated, saxagliptin monotherapy is a promising option for antidiabetic management as, when given at a reduced dose, it is well-tolerated with a safety profile similar to that of placebo

    Brain Uptake, Retention, and Efflux of Aluminum and Manganese

    Get PDF
    My colleagues and I investigated the sites and mechanisms of aluminum (Al) and manganese (Mn) distribution through the blood-brain barrier (BBB). Microdialysis was used to sample non-protein-bound Al in the extracellular fluid (ECF) of blood (plasma) and brain. Brain ECF Al appearance after intravenous Al citrate injection was too rapid to attribute to diffusion or to transferrin-receptor-mediated endocytosis, suggesting another carrier-mediated process. The brain:blood ECF Al concentration ratio was 0.15 at constant blood and brain ECF Al concentrations, suggesting carrier-mediated brain Al efflux. Pharmacological manipulations suggested the efflux carrier might be a monocarboxylate transporter (MCT). However, the lack of Al 14C-citrate uptake into rat erythrocytes suggested it is not a good substrate for isoform MCT1 or for the band 3 anion exchanger. Al 14C-citrate uptake into murine-derived brain endothelial cells appeared to be carrier mediated, Na independent, pH independent, and energy dependent. Uptake was inhibited by substrate/inhibitors of the MCT and organic anion transporter families. Determination of 26Al in rat brain at various times after intravenous 26Al suggested a prolonged brain 26Al half-life. It appears that Al transferrin and Al citrate cross the BBB by different mechanisms, that much of the Al entering brain ECF is rapidly effluxed, probably as Al citrate, but that some Al is retained for quite some time. Brain influx of the Mn2+ ion and Mn citrate, determined with the in situ brain perfusion technique, was greater than that attributable to diffusion, suggesting carrier-mediated uptake. Mn citrate uptake was approximately 3-fold greater than the Mn2+ ion, suggesting it is a primary Mn species entering the brain. After Mn2+ ion, Mn citrate, or Mn transferrin injection into the brain, brain Mn efflux was not more rapid than that predicted from diffusion. The BBB permeation of Al and Mn is mediated by carriers that may help regulate their brain concentrations

    SMF-1, SMF-2 and SMF-3 DMT1 Orthologues Regulate and Are Regulated Differentially by Manganese Levels in C. elegans

    Get PDF
    Manganese (Mn) is an essential metal that can exert toxic effects at high concentrations, eventually leading to Parkinsonism. A major transporter of Mn in mammals is the divalent-metal transporter (DMT1). We characterize here DMT1-like proteins in the nematode C. elegans, which regulate and are regulated by Mn and iron (Fe) content. We identified three new DMT1-like genes in C. elegans: smf-1, smf-2 and smf-3. All three can functionally substitute for loss of their yeast orthologues in S. cerevisiae. In the worm, deletion of smf-1 or smf-3 led to an increased Mn tolerance, while loss of smf-2 led to increased Mn sensitivity. smf mRNA levels measured by QRT-PCR were up-regulated upon low Mn and down-regulated upon high Mn exposures. Translational GFP-fusions revealed that SMF-1 and SMF-3 strongly localize to partially overlapping apical regions of the gut epithelium, suggesting a differential role for SMF-1 and SMF-3 in Mn nutritional intake. Conversely, SMF-2 was detected in the marginal pharyngeal epithelium, possibly involved in metal-sensing. Analysis of metal content upon Mn exposure in smf mutants revealed that SMF-3 is required for normal Mn uptake, while smf-1 was dispensable. Higher smf-2 mRNA levels correlated with higher Fe content, supporting a role for SMF-2 in Fe uptake. In smf-1 and smf-3 but not in smf-2 mutants, increased Mn exposure led to decreased Fe levels, suggesting that both metals compete for transport by SMF-2. Finally, SMF-3 was post-translationally and reversibly down-regulated following Mn-exposure. In sum, we unraveled a complex interplay of transcriptional and post-translational regulations of 3 DMT1-like transporters in two adjacent tissues, which regulate metal-content in C. elegans

    Caenorhabditis elegans: An Emerging Model in Biomedical and Environmental Toxicology

    Get PDF
    The nematode Caenorhabditis elegans has emerged as an important animal model in various fields including neurobiology, developmental biology, and genetics. Characteristics of this animal model that have contributed to its success include its genetic manipulability, invariant and fully described developmental program, well-characterized genome, ease of maintenance, short and prolific life cycle, and small body size. These same features have led to an increasing use of C. elegans in toxicology, both for mechanistic studies and high-throughput screening approaches. We describe some of the research that has been carried out in the areas of neurotoxicology, genetic toxicology, and environmental toxicology, as well as high-throughput experiments with C. elegans including genome-wide screening for molecular targets of toxicity and rapid toxicity assessment for new chemicals. We argue for an increased role for C. elegans in complementing other model systems in toxicological research

    Visceral, subcutaneous abdominal adiposity and liver fat content distribution in normal glucose tolerance, impaired fasting glucose and/or impaired glucose tolerance

    Get PDF
    Q1Q1Objectives: To examine the specific distribution of liver fat content, visceral and subcutaneous adiposity in normal glucose tolerance (NGT/NGT), isolated impaired fasting glucose (iIFG), isolated impaired glucose tolerance (iIGT) and combined conditions (IFG+IGT), as well as with newly diagnosed type 2 diabetes (nT2D). Design: Multicenter, international observational study: cross-sectional analysis. Subjects: Two thousand five hundred and fifteen patients (50.0% women, 54.5% non-Caucasian) without previously known diabetes were recruited from 29 countries. Abdominal fat distribution was measured by computed tomography (CT). Liver fat was estimated using the CT-liver mean attenuation. Results: Compared with NGT/NGT patients, increased visceral adiposity was found in iIFG, iIGT, IFG+IGT and nT2D; estimated liver fat progressively increased across these conditions. A one-s.d. increase in visceral adiposity was associated with an increased risk of having iIFG (men: odds ratio (OR) 1.41 (95% confidence interval (CI) 1.15–1.74), women: OR 1.62 (1.29–2.04)), iIGT (men: OR 1.59 (1.15–2.01), women: OR 1.30 (0.96–1.76)), IFG+IGT (men: OR 1.64 (1.27–2.13), women: OR 1.83 (1.36–2.48)) and nT2D (men: OR 1.80 (1.35–2.42), women: OR 1.73 (1.25–2.41)). A one-s.d. increase in estimated liver fat was associated with iIGT (men: OR 1.46 (1.12–1.90), women: OR 1.81 (1.41–2.35)), IFG+IGT (men: OR 1.42 (1.14–1.77), women: OR 1.74 (1.35–2.26)) and nT2D (men: OR 1.77 (1.40–2.27), women: OR 2.38 (1.81–3.18)). Subcutaneous abdominal adipose tissue showed an inverse relationship with nT2D in women (OR 0.63 (0.45–0.88)). Conclusions: Liver fat was associated with iIGT but not with iIFG, whereas visceral adiposity was associated with both. Liver fat and visceral adiposity were associated with nT2D, whereas subcutaneous adiposity showed an inverse relationship with nT2D in women
    corecore