150 research outputs found

    Potassium ferrate [Fe(VI)] does not mediate self-sterilization of a surrogate mars soil

    Get PDF
    BACKGROUND: Martian soil is thought to be enriched with strong oxidants such as peroxides and/or iron in high oxidation states that might destroy biological materials. There is also a high flux of ultraviolet radiation at the surface of Mars. Thus, Mars may be inhospitable to life as we know it on Earth. We examined the hypothesis that if the soil of Mars contains ferrates [Fe(VI)], the strongest of the proposed oxidizing species, and also is exposed to high fluxes of UV radiation, it will be self-sterilizing. RESULTS: Under ambient conditions (25°C, oxygen and water present) K(2)FeO(4 )mixed into sand mineralized some reactive organic molecules to CO(2), while less reactive compounds were not degraded. Dried endospores of Bacillus subtilis incubated in a Mars surrogate soil comprised of dry silica sand containing 20% by weight K(2)FeO(4 )and under conditions similar to those now on Mars (extreme desiccation, cold, and a CO(2)-dominated atmosphere) were resistant to killing by the ferrate-enriched sand. Similar results were observed with permanganate. Spores in oxidant-enriched sand exposed to high fluxes of UV light were protected from the sporocidal activity of the radiation below about 5 mm depths. CONCLUSION: Based on our data and previously published descriptions of ancient but dormant life forms on Earth, we suggest that if entities resembling bacterial endospores were produced at some point by life forms on Mars, they might still be present and viable, given appropriate germination conditions. Endospores delivered to Mars on spacecraft would possibly survive and potentially compromise life detection experiments

    Phototropin-mediated perception of light direction in leaves regulates blade flattening.

    Get PDF
    One conserved feature among angiosperms is the development of flat thin leaves. This developmental pattern optimizes light capture and gas exchange. The blue light (BL) receptors phototropins are required for leaf flattening, with the null phot1phot2 mutant showing curled leaves in Arabidopsis (Arabidopsis thaliana). However, key aspects of their function in leaf development remain unknown. Here, we performed a detailed spatiotemporal characterization of phototropin function in Arabidopsis leaves. We found that phototropins perceive light direction in the blade, and, similar to their role in hypocotyls, they control the spatial pattern of auxin signaling, possibly modulating auxin transport, to ultimately regulate cell expansion. Phototropin signaling components in the leaf partially differ from hypocotyls. Moreover, the light response on the upper and lower sides of the leaf blade suggests a partially distinct requirement of phototropin signaling components on each side. In particular, NON PHOTOTROPIC HYPOCOTYL 3 showed an adaxial-specific function. In addition, we show a prominent role of PHYTOCHROME KINASE SUBSTRATE 3 in leaf flattening. Among auxin transporters, PIN-FORMED 3,4,7 and AUXIN RESISTANT 1 (AUX1)/LIKE AUXIN RESISTANT 1 (LAX1) are required for the response while ABCB19 has a regulatory role. Overall, our results show that directional BL perception by phototropins is a key aspect of leaf development, integrating endogenous and exogenous signals

    Cardiac PET/CT with Rb-82: optimization of image acquisition and reconstruction parameters.

    Get PDF
    Our aim was to characterize the influence of time-of-flight (TOF) and point spread function (PSF) recovery corrections, as well as ordered subset expectation maximization (OSEM) reconstruction parameters, in (82)Rb PET/CT quantification of myocardial blood flow (MBF) and myocardial flow reserve (MFR). Rest and stress list-mode dynamic (82)Rb PET acquisition data from 10 patients without myocardial flow defects and 10 patients with myocardial blood flow defects were reconstructed retrospectively. OSEM reconstructions were performed with Gaussian filters of 4, 6, and 8 mm, different iterations, and subset numbers (2 × 24; 2 × 16; 3 × 16; 4 × 16). Rest and stress global, regional, and segmental MBF and MFR were computed from time activity curves with FlowQuant(©) software. Left ventricular segmentation using the 17-segment American Heart Association model was obtained. Whole left ventricle (LV) MBF at rest and stress were 0.97 ± 0.30 and 2.30 ± 1.00 mL/min/g, respectively, and MFR was 2.40 ± 1.13. Concordance was excellent and all reconstruction parameters had no significant impact on MBF, except for the exclusion of TOF which led to significantly decreased concordance in rest and stress MBF in patients with or without perfusion defects on a coronary artery basis and in MFR in patients with perfusion defects. Changes in reconstruction parameters in perfusion (82)Rb PET/CT studies influence quantitative MBF analysis. The inclusion of TOF information in the tomographic reconstructions had significant impact in MBF quantification

    Wedgebox analysis of four-lepton events from neutralino pair production at the LHC

    Get PDF
    `Wedgebox' plots constructed by plotting the di-electron invariant mass versus the di-muon invariant mass from pp -> e^+e^- mu^+ mu^- + missing energy signature LHC events. Data sets of such events are obtained across the MSSM input parameter space in event-generator simulations, including cuts designed to remove SM backgrounds. Their study reveals several general features: (1)Regions in the MSSM input parameter space where a sufficient number of events are expected so as to be able to construct a clear wedgebox plot are delineated. (2)The presence of box shapes on a wedgebox plot either indicates the presence of heavy Higgs bosons decays or restricts the location to a quite small region of low \mu and M_2 values \lsim 200 GeV, a region denoted as the `lower island'. In this region, wedgebox plots can be quite complicated and change in pattern rather quickly as one moves around in the (\mu, M_2) plane. (3)Direct neutralino pair production from an intermediate Z^{0*} may only produce a wedge-shape since only \widetilde{\chi}_2^0\widetilde{\chi}_3^0 decays can contribute significantly. (4)A double-wedge or wedge-protruding-from-a-box pattern on a wedgebox plot, which results from combining a variety of MSSM production processes, yields three distinct observed endpoints, almost always attributable to \widetilde{\chi}_{2,3,4}^0 \to \widetilde{\chi}_1^0 \ell^+\ell^- decays, which can be utilized to determine a great deal of information about the neutralino and slepton mass spectra and related MSSM input parameters. Wedge and double-wedge patterns are seen in wedgebox plots in another region of higher \mu and M_2 values, denoted as the`upper island.' Here the pattern is simpler and more stable as one moves across the (\mu, M_2) input parameter space.Comment: 28 pages (LaTeX), 8 figures (encapsulated postscript

    Measurement of microbial activity in soil by colorimetric observation of in situ dye reduction: an approach to detection of extraterrestrial life

    Get PDF
    BACKGROUND: Detecting microbial life in extraterrestrial locations is a goal of space exploration because of ecological and health concerns about possible contamination of other planets with earthly organisms, and vice versa. Previously we suggested a method for life detection based on the fact that living entities require a continual input of energy accessed through coupled oxidations and reductions (an electron transport chain). We demonstrated using earthly soils that the identification of extracted components of electron transport chains is useful for remote detection of a chemical signature of life. The instrument package developed used supercritical carbon dioxide for soil extraction, followed by chromatography or electrophoresis to separate extracted compounds, with final detection by voltammetry and tandem mass-spectrometry. RESULTS: Here we used Earth-derived soils to develop a related life detection system based on direct observation of a biological redox signature. We measured the ability of soil microbial communities to reduce artificial electron acceptors. Living organisms in pure culture and those naturally found in soil were shown to reduce 2,3-dichlorophenol indophenol (DCIP) and the tetrazolium dye 2,3-bis(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide inner salt (XTT). Uninoculated or sterilized controls did not reduce the dyes. A soil from Antarctica that was determined by chemical signature and DNA analysis to be sterile also did not reduce the dyes. CONCLUSION: Observation of dye reduction, supplemented with extraction and identification of only a few specific signature redox-active biochemicals such as porphyrins or quinones, provides a simplified means to detect a signature of life in the soils of other planets or their moons

    Membrane-Bound TNF Induces Protective Immune Responses to M. bovis BCG Infection: Regulation of memTNF and TNF Receptors Comparing Two memTNF Molecules

    Get PDF
    Several activities of the transmembrane form of TNF (memTNF) in immune responses to intracellular bacterial infection have been shown to be different from those exerted by soluble TNF. Evidence is based largely on studies in transgenic mice expressing memTNF, but precise cellular mechanisms are not well defined and the importance of TNF receptor regulation is unknown. In addition, memTNF activities are defined for a particular modification of the extracellular domain of TNF but a direct comparison of different mutant memTNF molecules has not been done in vivo

    Thrombosis in vasculitis: from pathogenesis to treatment

    Get PDF
    In recent years, the relationship between inflammation and thrombosis has been deeply investigated and it is now clear that immune and coagulation systems are functionally interconnected. Inflammation-induced thrombosis is by now considered a feature not only of autoimmune rheumatic diseases, but also of systemic vasculitides such as Behçet’s syndrome, ANCA-associated vasculitis or giant cells arteritis, especially during active disease. These findings have important consequences in terms of management and treatment. Indeed, Behçet’syndrome requires immunosuppressive agents for vascular involvement rather than anticoagulation or antiplatelet therapy, and it is conceivable that also in ANCA-associated vasculitis or large vessel-vasculitis an aggressive anti-inflammatory treatment during active disease could reduce the risk of thrombotic events in early stages. In this review we discuss thrombosis in vasculitides, especially in Behçet’s syndrome, ANCA-associated vasculitis and large-vessel vasculitis, and provide pathogenetic and clinical clues for the different specialists involved in the care of these patients
    corecore