323 research outputs found

    Elastic Properties and Magnetic Phase Diagrams of Dense Kondo Compound Ce0.75La0.25B6

    Full text link
    We have investigated the elastic properties of the cubic dense Kondo compound Ce0.75La0.25B6 by means of ultrasonic measurements. We have obtained magnetic fields vs temperatures (H-T) phase diagrams under magnetic fields along the crystallographic [001], [110] and [111] axes. An ordered phase IV showing the elastic softening of c44 locates in low temperature region between 1.6 and 1.1 K below 0.7 T in all field directions. The phase IV shows an isotropic nature with regard to the field directions, while the antiferro-magnetic phase III shows an anisotropic character. A remarkable softening of c44 and a spontaneous trigonal distortion εyz+εzx+εxy recently reported by Akatsu et al. [J. Phys. Soc. Jpn. 72 (2003) 205] in the phase IV favor a ferro-quadrupole (FQ) moment of Oyz+Ozx+Oxy induced by an octupole ordering.Comment: 9 figures, Strongly Correlated Electron

    Anomalous elastic softening of SmRu_{4}P_{12} under high pressure

    Get PDF
    The filled skutterudite compound SmRu_4P_{12} undergoes a complex evolution from a paramagnetic metal (phase I) to a probable multipolar ordering insulator (phase II) at T_{MI} = 16.5 K, then to a magnetically ordered phase (phase III) at T_{N} = 14 K. Elastic properties under hydrostatic pressures were investigated to study the nature of the ordering phases. We found that distinct elastic softening above T_{MI} is induced by pressure, giving evidence of quadrupole degeneracy of the ground state in the crystalline electric field. It also suggests that quadrupole moment may be one of the order parameters below T_{MI} under pressure. Strangely, the largest degree of softening is found in the transverse elastic constant C_{T} at around 0.5-0.6 GPa, presumably having relevancy to the competing and very different Gruneisen parameters \Omega of T_{MI} and T_{N}. Interplay between the two phase transitions is also verified by the rapid increase of T_{MI} under pressure with a considerably large \Omega of 9. Our results can be understood on the basis of the proposed octupole scenario for SmRu_4P_{12}.Comment: 7 pages, 7 figure

    Quadrupole Susceptibility and Elastic Softening due to a Vacancy in Silicon Crystal

    Full text link
    We investigate the electronic states around a single vacancy in silicon crystal by using the Green's function approach. The triply degenerate vacancy states within the band gap are found to be extended over a large distance ∼20A˚\sim20 {\rm \AA} from the vacancy site and contribute to the reciprocal temperature dependence of the quadrupole susceptibility resulting in the elastic softening at low temperture. The Curie constant of the quadrupole susceptibility for the trigonal mode (Oyz,Ozx,OxyO_{yz},O_{zx},O_{xy}) is largely enhanced as compared to that for the tetragonal mode (O20,O22O_{2}^{0},O_{2}^{2}). The obtained results are consistent with the recent ultrasonic experiments in silicon crystal down to 20 mK. We also calculate the dipole and octupole susceptibilities and find that the octupole susceptibilities are extremely enhannced for a specific mode.Comment: 6 pages, with 5 figure

    Gap opening and orbital modification of superconducting FeSe above the structural distortion

    Full text link
    We utilize steady-state and transient optical spectroscopies to examine the responses of nonthermal quasiparticles with respect to orbital modifications in normal-state iron-chalcogenide superconductors. The dynamics shows the emergence of gap-like quasiparticles (associated to a ~36 meV energy gap) with a coincident transfer of the optical spectral weight in the visible range, at temperatures above the structural distortion. Our observations suggest that opening of the high-temperature gap and the lattice symmetry breaking are possibly driven by short-range orbital and/or charge orders, implicating a close correlation between electronic nematicity and precursor order in iron-based superconductors

    Magnetic Resonance in the Spin-Peierls compound α′−NaV2O5\alpha'-NaV_2O_5

    Full text link
    We present results from magnetic resonance measurements for 75-350 GHz in α\alpha'-NaV2_{2}O5_{5}. The temperature dependence of the integrated intensity indicates that we observe transitions in the excited state. A quantitative description gives resonances in the triplet state at high symmetry points of the excitation spectrum of this Spin-Peierls compound. This energy has the same temperature dependence as the Spin-Peierls gap. Similarities and differences with the other inorganic compound CuGeO3_{3} are discussed.Comment: 2 pages, REVTEX, 3 figures. to be published in Phys.Rev.

    Elastic Constants and Charge Ordering in a'-NaV2O5

    Full text link
    We present the temperature dependence of shear and longitudinal elastic constants in a'-NaV2O5. For the longitudinal c22 and c33 modes we find anomalies at Tc in contrast to the Spin Peierls substance CuGeO3 where only the longitudinal mode along the chain shows a pronounced effect at TSP. The c66 shear mode (propagation along the chain in b-direction polarization in a-direction) shows strong softening of 12%. Such a large effect is absent for all shear modes in CuGeO3. We can interpret this softening with a coupling of the exy symmetry strain to the charge fluctuation of B1g symmetry. We give the possible low temperature charge distribution.Comment: PDF file, 4 pages, 4 figures include

    Lattice Distortion and Octupole Ordering Model in CexLa1-xB6

    Full text link
    Possible order parameters of the phase IV in CexLa1-xB6 are discussed with special attention to the lattice distortion recently observed. A \Gamma_{5u}-type octupole order with finite wave number is proposed as the origin of the distortion along the [111] direction. The \Gamma_8 crystalline electric field (CEF) level splits into three levels by a mean field with the \Gamma_{5u} symmetry. The ground and highest singlets have the same quadrupole moment, while the intermediate doublet has an opposite sign. It is shown that any collinear order of \Gamma_{5u}-type octupole moment accompanies the \Gamma_{5g}-type ferro-quadrupole order, and the coupling of the quadrupole moment with the lattice induces the distortion. The cusp in the magnetization at the phase transition is reproduced, but the internal magnetic field due to the octupole moment is smaller than the observed one by an order of magnitude.Comment: 5 pages, 4 figures, submitted to J. Phys. Soc. Jp

    Emission spectra and intrinsic optical bistability in a two-level medium

    Full text link
    Scattering of resonant radiation in a dense two-level medium is studied theoretically with account for local field effects and renormalization of the resonance frequency. Intrinsic optical bistability is viewed as switching between different spectral patterns of fluorescent light controlled by the incident field strength. Response spectra are calculated analytically for the entire hysteresis loop of atomic excitation. The equations to describe the non-linear interaction of an atomic ensemble with light are derived from the Bogolubov-Born-Green-Kirkwood-Yvon hierarchy for reduced single particle density matrices of atoms and quantized field modes and their correlation operators. The spectral power of scattered light with separated coherent and incoherent constituents is obtained straightforwardly within the hierarchy. The formula obtained for emission spectra can be used to distinguish between possible mechanisms suggested to produce intrinsic bistability.Comment: 18 pages, 5 figure
    • …
    corecore