323 research outputs found
Elastic Properties and Magnetic Phase Diagrams of Dense Kondo Compound Ce0.75La0.25B6
We have investigated the elastic properties of the cubic dense Kondo compound
Ce0.75La0.25B6 by means of ultrasonic measurements. We have obtained magnetic
fields vs temperatures (H-T) phase diagrams under magnetic fields along the
crystallographic [001], [110] and [111] axes. An ordered phase IV showing the
elastic softening of c44 locates in low temperature region between 1.6 and 1.1
K below 0.7 T in all field directions. The phase IV shows an isotropic nature
with regard to the field directions, while the antiferro-magnetic phase III
shows an anisotropic character. A remarkable softening of c44 and a spontaneous
trigonal distortion εyz+εzx+εxy recently reported by Akatsu et
al. [J. Phys. Soc. Jpn. 72 (2003) 205] in the phase IV favor a ferro-quadrupole
(FQ) moment of Oyz+Ozx+Oxy induced by an octupole ordering.Comment: 9 figures, Strongly Correlated Electron
Anomalous elastic softening of SmRu_{4}P_{12} under high pressure
The filled skutterudite compound SmRu_4P_{12} undergoes a complex evolution
from a paramagnetic metal (phase I) to a probable multipolar ordering insulator
(phase II) at T_{MI} = 16.5 K, then to a magnetically ordered phase (phase III)
at T_{N} = 14 K. Elastic properties under hydrostatic pressures were
investigated to study the nature of the ordering phases. We found that distinct
elastic softening above T_{MI} is induced by pressure, giving evidence of
quadrupole degeneracy of the ground state in the crystalline electric field. It
also suggests that quadrupole moment may be one of the order parameters below
T_{MI} under pressure. Strangely, the largest degree of softening is found in
the transverse elastic constant C_{T} at around 0.5-0.6 GPa, presumably having
relevancy to the competing and very different Gruneisen parameters \Omega of
T_{MI} and T_{N}. Interplay between the two phase transitions is also verified
by the rapid increase of T_{MI} under pressure with a considerably large \Omega
of 9. Our results can be understood on the basis of the proposed octupole
scenario for SmRu_4P_{12}.Comment: 7 pages, 7 figure
Quadrupole Susceptibility and Elastic Softening due to a Vacancy in Silicon Crystal
We investigate the electronic states around a single vacancy in silicon
crystal by using the Green's function approach. The triply degenerate vacancy
states within the band gap are found to be extended over a large distance
from the vacancy site and contribute to the reciprocal
temperature dependence of the quadrupole susceptibility resulting in the
elastic softening at low temperture. The Curie constant of the quadrupole
susceptibility for the trigonal mode () is largely
enhanced as compared to that for the tetragonal mode ().
The obtained results are consistent with the recent ultrasonic experiments in
silicon crystal down to 20 mK. We also calculate the dipole and octupole
susceptibilities and find that the octupole susceptibilities are extremely
enhannced for a specific mode.Comment: 6 pages, with 5 figure
Gap opening and orbital modification of superconducting FeSe above the structural distortion
We utilize steady-state and transient optical spectroscopies to examine the
responses of nonthermal quasiparticles with respect to orbital modifications in
normal-state iron-chalcogenide superconductors. The dynamics shows the
emergence of gap-like quasiparticles (associated to a ~36 meV energy gap) with
a coincident transfer of the optical spectral weight in the visible range, at
temperatures above the structural distortion. Our observations suggest that
opening of the high-temperature gap and the lattice symmetry breaking are
possibly driven by short-range orbital and/or charge orders, implicating a
close correlation between electronic nematicity and precursor order in
iron-based superconductors
Magnetic Resonance in the Spin-Peierls compound
We present results from magnetic resonance measurements for 75-350 GHz in
'-NaVO. The temperature dependence of the integrated
intensity indicates that we observe transitions in the excited state. A
quantitative description gives resonances in the triplet state at high symmetry
points of the excitation spectrum of this Spin-Peierls compound. This energy
has the same temperature dependence as the Spin-Peierls gap. Similarities and
differences with the other inorganic compound CuGeO are discussed.Comment: 2 pages, REVTEX, 3 figures. to be published in Phys.Rev.
Elastic Constants and Charge Ordering in a'-NaV2O5
We present the temperature dependence of shear and longitudinal elastic
constants in a'-NaV2O5. For the longitudinal c22 and c33 modes we find
anomalies at Tc in contrast to the Spin Peierls substance CuGeO3 where only the
longitudinal mode along the chain shows a pronounced effect at TSP. The c66
shear mode (propagation along the chain in b-direction polarization in
a-direction) shows strong softening of 12%. Such a large effect is absent for
all shear modes in CuGeO3. We can interpret this softening with a coupling of
the exy symmetry strain to the charge fluctuation of B1g symmetry. We give the
possible low temperature charge distribution.Comment: PDF file, 4 pages, 4 figures include
Lattice Distortion and Octupole Ordering Model in CexLa1-xB6
Possible order parameters of the phase IV in CexLa1-xB6 are discussed with
special attention to the lattice distortion recently observed. A
\Gamma_{5u}-type octupole order with finite wave number is proposed as the
origin of the distortion along the [111] direction. The \Gamma_8 crystalline
electric field (CEF) level splits into three levels by a mean field with the
\Gamma_{5u} symmetry. The ground and highest singlets have the same quadrupole
moment, while the intermediate doublet has an opposite sign. It is shown that
any collinear order of \Gamma_{5u}-type octupole moment accompanies the
\Gamma_{5g}-type ferro-quadrupole order, and the coupling of the quadrupole
moment with the lattice induces the distortion. The cusp in the magnetization
at the phase transition is reproduced, but the internal magnetic field due to
the octupole moment is smaller than the observed one by an order of magnitude.Comment: 5 pages, 4 figures, submitted to J. Phys. Soc. Jp
Emission spectra and intrinsic optical bistability in a two-level medium
Scattering of resonant radiation in a dense two-level medium is studied
theoretically with account for local field effects and renormalization of the
resonance frequency. Intrinsic optical bistability is viewed as switching
between different spectral patterns of fluorescent light controlled by the
incident field strength. Response spectra are calculated analytically for the
entire hysteresis loop of atomic excitation. The equations to describe the
non-linear interaction of an atomic ensemble with light are derived from the
Bogolubov-Born-Green-Kirkwood-Yvon hierarchy for reduced single particle
density matrices of atoms and quantized field modes and their correlation
operators. The spectral power of scattered light with separated coherent and
incoherent constituents is obtained straightforwardly within the hierarchy. The
formula obtained for emission spectra can be used to distinguish between
possible mechanisms suggested to produce intrinsic bistability.Comment: 18 pages, 5 figure
- …