53 research outputs found

    Temperature-dependent rheological and viscoelastic investigation of a poly(2-methyl-2oxazoline)-b-poly(2-iso-butyl-2-oxazoline)-b-poly(2-methyl-2-oxazoline)-based thermogelling hydrogel

    Get PDF
    The synthesis and characterization of an ABA triblock copolymer based on hydrophilic poly(2-methyl-2-oxazoline) (pMeOx) blocks A and a modestly hydrophobic poly(2-iso-butyl-2-oxazoline) (piBuOx) block B is described. Aqueous polymer solutions were prepared at different concentrations (1–20 wt %) and their thermogelling capability using visual observation was investigated at different temperatures ranging from 5 to 80 ◦C. As only a 20 wt % solution was found to undergo thermogelation, this concentration was investigated in more detail regarding its temperature-dependent viscoelastic profile utilizing various modes (strain or temperature sweep). The prepared hydrogels from this particular ABA triblock copolymer have interesting rheological and viscoelastic properties, such as reversible thermogelling and shear thinning, and may be used as bioink, which was supported by its very low cytotoxicity and initial printing experiments using the hydrogels. However, the soft character and low yield stress of the gels do not allow real 3D printing at this point. © 2019 by the authors.Deutsche Forschungsgemeinschaft (DFG, German Research Foundation)German Research Foundation (DFG) [326998133-TRR 225, 398461692]; Evonik Foundation; Ministry of Education, Youth and Sports of the Czech Republic-program NPU I [LO1504]; Deutsche Forschungsgemeinschaft within the DFG State Major Instrumentation ProgrammeGerman Research Foundation (DFG) [INST 105022/58-1 FUGG

    Porous polysulfone coatings for enhanced drug delivery

    Get PDF
    The synthesis of a porous polysulfone (PSU) coating for use in drug delivery applications is presented. PSU can serve as a functional surface coating for drug delivery vehicles, such as intraocular biomicrorobots. The coatings can be applied using spin coating or dip coating. The porosity is introduced by selectively dissolving calcium carbonate nanoparticles embedded in the bulk polymer. The network of pores thus formed increases by a factor of thirty the amount of Rhodamine B (model drug) that can be loaded and by a factor of fifteen the amount that can be released. The films do not affect cell viability and exhibit poor cell adhesion. The straightforward synthesis and predictability of porosity enables the tuning of the amount of drug that can be loade

    Nanomechanics on FGF-2 and Heparin Reveal Slip Bond Characteristics with pH Dependency

    Get PDF
    Fibroblast growth factor 2 (FGF-2), an important paracrine growth factor, binds electrostatically with low micromolar affinity to heparan sulfates present on extracellular matrix proteins. A single molecular analysis served as a basis to decipher the nanomechanical mechanism of the interaction between FGF-2 and the heparan sulfate surrogate, heparin, with a modular atomic force microscope (AFM) design combining magnetic actuators with force measurements at the low force regime (1 × 101 to 1 × 104 pN/s). Unbinding events between FGF-2–heparin complexes were specific and short-lived. Binding between FGF-2 and heparin had strong slip bond characteristics as demonstrated by a decrease of lifetime with tensile force on the complex. Unbinding forces between FGF-2 and heparin were further detailed at different pH as relevant for (patho-) physiological conditions. An acidic pH environment (5.5) modulated FGF-2–heparin binding as demonstrated by enhanced rupture forces needed to release FGF-2 from the heparin-FGF-2 complex as compared to physiological conditions. This study provides a mechanistic and hypothesis driven model on how molecular forces may impact FGF-2 release and storage during tissue remodeling and repair

    Myelin is dependent on the Charcot-Marie-Tooth Type 4H disease culprit protein FRABIN/FGD4 in Schwann cells

    Get PDF
    Studying the function and malfunction of genes and proteins associated with inherited forms of peripheral neuropathies has provided multiple clues to our understanding of myelinated nerves in health and disease. Here, we have generated a mouse model for the peripheral neuropathy Charcot-Marie-Tooth disease type 4H by constitutively disrupting the mouse orthologue of the suspected culprit gene FGD4 that encodes the small RhoGTPase Cdc42-guanine nucleotide exchange factor Frabin. Lack of Frabin/Fgd4 causes dysmyelination in mice in early peripheral nerve development, followed by profound myelin abnormalities and demyelination at later stages. At the age of 60 weeks, this was accompanied by electrophysiological deficits. By crossing mice carrying alleles of Frabin/Fgd4 flanked by loxP sequences with animals expressing Cre recombinase in a cell type-specific manner, we show that Schwann cell-autonomous Frabin/Fgd4 function is essential for proper myelination without detectable primary contributions from neurons. Deletion of Frabin/Fgd4 in Schwann cells of fully myelinated nerve fibres revealed that this protein is not only required for correct nerve development but also for accurate myelin maintenance. Moreover, we established that correct activation of Cdc42 is dependent on Frabin/Fgd4 function in healthy peripheral nerves. Genetic disruption of Cdc42 in Schwann cells of adult myelinated nerves resulted in myelin alterations similar to those observed in Frabin/Fgd4-deficient mice, indicating that Cdc42 and the Frabin/Fgd4-Cdc42 axis are critical for myelin homeostasis. In line with known regulatory roles of Cdc42, we found that Frabin/Fgd4 regulates Schwann cell endocytosis, a process that is increasingly recognized as a relevant mechanism in peripheral nerve pathophysiology. Taken together, our results indicate that regulation of Cdc42 by Frabin/Fgd4 in Schwann cells is critical for the structure and function of the peripheral nervous system. In particular, this regulatory link is continuously required in adult fully myelinated nerve fibres. Thus, mechanisms regulated by Frabin/Fgd4-Cdc42 are promising targets that can help to identify additional regulators of myelin development and homeostasis, which may crucially contribute also to malfunctions in different types of peripheral neuropathie

    Protective coatings for intraocular wirelessly controlled microrobots for implantation : corrosion, cell culture, and in vivo animal tests

    Get PDF
    Grup: Gnm3 FundingDiseases in the ocular posterior segment are a leading cause of blindness. The surgical skills required to treat them are at the limits of human manipulation ability, and involve the risk of permanent retinal damage. Instrument tethering and design limit accessibility within the eye. Wireless microrobots suturelessly injected into the posterior segment, steered using magnetic manipulation, are proposed for procedures involving implantation. Biocompatibility is a prerequisite for these procedures. This paper investigates the use of cobalt-nickel microrobots coated with polypyrrole, and gold, which has been used as an ocular implant material. Polypyrrole has well-established biocompatibility properties, but no reports concerning its ocular implantation is available. Coated and uncoated microrobots were investigated for their corrosion properties, and solutions that had contained coated and uncoated microrobots for one week were tested for cytotoxicity by monitoring NIH3T3 cell viability. None of the microrobots showed significant corrosion currents and corrosion potentials were as expected in relation to the intrinsic nobility of the materials. NIH3T3 cell viability was not affected by the release medium, in which coated/uncoated microrobots were stored. In vivo tests inside rabbit eyes were performed using coated microrobots. There were no significant inflammatory responses during the first week after injection. An inflammatory response detected after two weeks was likely due to a lack of longer-duration biocompatibility. The results provide valuable information for those who work on implant technology and biocompatibility. Coated microrobots have the potential to facilitate a new generation of surgical treatments, diagnostics and drug-delivery techniques, when implantation in the ocular posterior segment will be possible

    Pathogen- and Host-Directed Antileishmanial Effects Mediated by Polyhexanide (PHMB)

    Get PDF
    BACKGROUND:Cutaneous leishmaniasis (CL) is a neglected tropical disease caused by protozoan parasites of the genus Leishmania. CL causes enormous suffering in many countries worldwide. There is no licensed vaccine against CL, and the chemotherapy options show limited efficacy and high toxicity. Localization of the parasites inside host cells is a barrier to most standard chemo- and immune-based interventions. Hence, novel drugs, which are safe, effective and readily accessible to third-world countries and/or drug delivery technologies for effective CL treatments are desperately needed. METHODOLOGY/PRINCIPAL FINDINGS:Here we evaluated the antileishmanial properties and delivery potential of polyhexamethylene biguanide (PHMB; polyhexanide), a widely used antimicrobial and wound antiseptic, in the Leishmania model. PHMB showed an inherent antileishmanial activity at submicromolar concentrations. Our data revealed that PHMB kills Leishmania major (L. major) via a dual mechanism involving disruption of membrane integrity and selective chromosome condensation and damage. PHMB's DNA binding and host cell entry properties were further exploited to improve the delivery and immunomodulatory activities of unmethylated cytosine-phosphate-guanine oligodeoxynucleotides (CpG ODN). PHMB spontaneously bound CpG ODN, forming stable nanopolyplexes that enhanced uptake of CpG ODN, potentiated antimicrobial killing and reduced host cell toxicity of PHMB. CONCLUSIONS:Given its low cost and long history of safe topical use, PHMB holds promise as a drug for CL therapy and delivery vehicle for nucleic acid immunomodulators

    Cell Guidance by 3D-Gradients in Hydrogel Matrices: Importance for Biomedical Applications

    No full text
    Concentration gradients of soluble and matrix-bound guidance cues in the extracellular matrix direct cell growth in native tissues and are of great interest for design of biomedical scaffolds and on implant surfaces. The focus of this review is to demonstrate the importance of gradient guidance for cells as it would be desirable to direct cell growth onto/into biomedical devices. Many studies have been described that illustrate the production and characterization of surface gradients, but three dimensional (3D)-gradients that direct cellular behavior are not well investigated. Hydrogels are considered as synthetic replacements for native extracellular matrices as they share key functions such as 2D- or 3D-solid support, fibrous structure, gas- and nutrition permeability and allow storage and release of biologically active molecules. Therefore this review focuses on current studies that try to implement soluble or covalently-attached gradients of growth factors, cytokines or adhesion sequences into 3D-hydrogel matrices in order to control cell growth, orientation and migration towards a target. Such gradient architectures are especially desirable for wound healing purposes, where defined cell populations need to be recruited from the blood stream and out of the adjacent tissue, in critical bone defects, for vascular implants or neuronal guidance structures where defined cell populations should be guided by appropriate signals to reach their proper positions or target tissues in order to accomplish functional repair

    Cell Guidance by 3D-Gradients in Hydrogel Matrices: Importance for Biomedical Applications

    No full text
    Concentration gradients of soluble and matrix-bound guidance cues in the extracellular matrix direct cell growth in native tissues and are of great interest for design of biomedical scaffolds and on implant surfaces. The focus of this review is to demonstrate the importance of gradient guidance for cells as it would be desirable to direct cell growth onto/into biomedical devices. Many studies have been described that illustrate the production and characterization of surface gradients, but three dimensional (3D)-gradients that direct cellular behavior are not well investigated. Hydrogels are considered as synthetic replacements for native extracellular matrices as they share key functions such as 2D- or 3D-solid support, fibrous structure, gas- and nutrition permeability and allow storage and release of biologically active molecules. Therefore this review focuses on current studies that try to implement soluble or covalently-attached gradients of growth factors, cytokines or adhesion sequences into 3D-hydrogel matrices in order to control cell growth, orientation and migration towards a target. Such gradient architectures are especially desirable for wound healing purposes, where defined cell populations need to be recruited from the blood stream and out of the adjacent tissue, in critical bone defects, for vascular implants or neuronal guidance structures where defined cell populations should be guided by appropriate signals to reach their proper positions or target tissues in order to accomplish functional repair.ISSN:1996-194

    Macrophages lift off surface-bound bacteria using a filopodium-lamellipodium hook-and-shovel mechanism

    Get PDF
    To clear pathogens from host tissues or biomaterial surfaces, phagocytes have to break the adhesive bacteria-substrate interactions. Here we analysed the mechanobiological process that enables macrophages to lift-off and phagocytose surface-bound Escherichia coli (E. coli). In this opsonin-independent process, macrophage filopodia hold on to the E. coli fimbriae long enough to induce a local protrusion of a lamellipodium. Specific contacts between the macrophage and E. coli are formed via the glycoprotein CD48 on filopodia and the adhesin FimH on type 1 fimbriae (hook). We show that bacterial detachment from surfaces occurrs after a lamellipodium has protruded underneath the bacterium (shovel), thereby breaking the multiple bacterium-surface interactions. After lift-off, the bacterium is engulfed by a phagocytic cup. Force activated catch bonds enable the long-term survival of the filopodium-fimbrium interactions while soluble mannose inhibitors and CD48 antibodies suppress the contact formation and thereby inhibit subsequent E. coli phagocytosis.ISSN:2045-232

    Sterilization Methods and Their Influence on Physicochemical Properties and Bioprinting of Alginate as a Bioink Component

    No full text
    Bioprinting has emerged as a valuable threedimensional (3D) biomanufacturing method to fabricate complex hierarchical cell-containing constructs. Spanning from basic research to clinical translation, sterile starting materials are crucial. In this study, we present pharmacopeia compendial sterilization methods for the commonly used bioink component alginate. Autoclaving (sterilization in saturated steam) and sterile filtration followed by lyophilization as well as the pharmacopeia non-compendial method, ultraviolet (UV)-irradiation for disinfection, were assessed. The impact of the sterilization methods and their effects on physicochemical and rheological properties, bioprinting outcome, and sterilization efficiency of alginate were detailed. Only sterile filtration followed by lyophilization as the sterilization method retained alginate's physicochemical properties and bioprinting behavior while resulting in a sterile outcome. This set of methods provides a blueprint for the analysis of sterilization effects on the rheological and physicochemical pattern of bioink components and is easily adjustable for other polymers used in the field of biofabrication in the future
    corecore