15 research outputs found

    Anomalous stress relaxation in random macromolecular networks

    Full text link
    Within the framework of a simple Rouse-type model we present exact analytical results for dynamical critical behaviour on the sol side of the gelation transition. The stress-relaxation function is shown to exhibit a stretched-exponential long-time decay. The divergence of the static shear viscosity is governed by the critical exponent k=ϕβk=\phi -\beta, where ϕ\phi is the (first) crossover exponent of random resistor networks, and β\beta is the critical exponent for the gel fraction. We also derive new results on the behaviour of normal stress coefficients.Comment: 13 pages, 6 figures; contribution to the proceedings of the Minerva International Workshop on Frontiers In The Physics Of Complex Systems (25-28 March 2001) - to appear in a special issue of Physica

    Critical Dynamics of Gelation

    Full text link
    Shear relaxation and dynamic density fluctuations are studied within a Rouse model, generalized to include the effects of permanent random crosslinks. We derive an exact correspondence between the static shear viscosity and the resistance of a random resistor network. This relation allows us to compute the static shear viscosity exactly for uncorrelated crosslinks. For more general percolation models, which are amenable to a scaling description, it yields the scaling relation k=ϕβ k=\phi-\beta for the critical exponent of the shear viscosity. Here β\beta is the thermal exponent for the gel fraction and ϕ\phi is the crossover exponent of the resistor network. The results on the shear viscosity are also used in deriving upper and lower bounds on the incoherent scattering function in the long-time limit, thereby corroborating previous results.Comment: 34 pages, 2 figures (revtex, amssymb); revised version (minor changes
    corecore