37 research outputs found

    Co-localization of clinically relevant antibiotic- and heavy metal resistance genes on plasmids in Klebsiella pneumoniae from marine bivalves

    Get PDF
    Klebsiella pneumoniae is an opportunistic pathogen frequently associated with antibiotic resistance and present in a wide range of environments, including marine habitats. However, little is known about the development, persistence, and spread of antibiotic resistance in such environments. This study aimed to obtain the complete genome sequences of antibiotic-resistantKlebsiella pneumoniae isolated from marine bivalves in order to determine the genetic context of antibiotic- and heavy metal resistance genes in these isolates. Five antibiotic-resistant Klebsiella pneumoniae isolates, of which four also carried heavy metal resistance genes, were selected for complete genome sequencing using the Illumina MiSeq platform and the Oxford Nanopore Technologies GridION device. Conjugation experiments were conducted to examine the transfer potential of selected plasmids. The average length of the complete genomes was 5.48 Mbp with a mean chromosome size of 5.27 Mbp. Seven plasmids were detected in the antibiotic-resistant isolates. Three IncFIB, one IncFIB/IncFII, and one IncFIB/IncHIB plasmid, respectively, carried antibiotic resistance genes such as qnrS1, aph(6)-Id and aph(3′)-Ia, aadA1, and aadA2. Four of these plasmids also carried genes encoding resistance to copper (pco), silver (sil), and arsenic (ars). One plasmid carrying tet(D) and blaSHV-1 as well as pco, sil, and ars genes was transferred to Escherichia coli by conjugation. We show the co-occurrence of antibiotic- and heavy metal resistance genes on a conjugative IncFIB plasmid from K. pneumoniae from marine bivalves. Our study highlights the importance of the marine environment and seafood as a possible dissemination route for antimicrobial resistance and provides insights into the potential for co-selection of antibiotic resistance genes by heavy metals

    Rapid high-resolution detection of colistin resistance in Gram-negative bacteria using flow cytometry: a comparison with broth microdilution, a commercial screening test and WGS

    Get PDF
    Background Even though both EUCAST and CLSI consider broth microdilution (BMD) as the reference method for antimicrobial susceptibility testing (AST) of colistin, the method exhibits potential flaws related to properties of the colistin molecule. Objectives To develop a flow cytometry method (FCM) for colistin AST and to validate it against BMD, a commercial screening test and WGS. Methods Colistin-mediated loss of membrane integrity in Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa and Acinetobacter spp. was detected with the fluorescent probe YoPro-1 by FCM. An international collection of 65 resistant and 109 susceptible isolates were analysed and the colistin concentration required to reach the EC50 was compared with the BMD MIC and the presence of genotypic resistance markers. Results The overall FCM sensitivity and specificity for colistin resistance was 89% and 94%, with E. coli > K. pneumoniae > P. aeruginosa, whereas the performance for Acinetobacter spp. was poor. All tested E. coli were correctly categorized. Three K. pneumoniae isolates with genotypic findings consistent with colistin resistance were detected by FCM but not BMD. Compared with BMD, FCM delivered AST results with a 75% reduction of time. Conclusions Here, we present a rapid FCM-based AST assay for qualitative and quantitative testing of colistin resistance in E. coli and K. pneumoniae. The assay revealed probable chromosomal colistin resistance in K. pneumoniae that was not detected by BMD. If confirmed, these results question the reliability of BMD for colistin testing.publishedVersio

    Legionella pneumophila in Municipal Shower Systems in Stavanger, Norway; A Longitudinal Surveillance Study Using Whole Genome Sequencing in Risk Management

    Get PDF
    Following an incidence of Legionnaires disease (LD) in 2007, where a municipal shower system was the likely source of infection, Stavanger municipality initiated a surveillance program for Legionella as part of establishing internal risk evaluation and prevention routines. More than 250 shower systems were examined for cultivatable Legionella pneumophila. The prevalence and diversity of serogroups (sg) and sequence types (STs) of L. pneumophila were mapped using available typing techniques over a period of more than 10 years (2010–2021). The surveillance showed an overall reduction in the L. pneumophila colonisation rate in municipal systems from 11 to 4.5% following prevention measures during the period, with the highest colonisation rate in complex systems (e.g., larger nursing homes and sports complexes). Further, an approximately even distribution between sg1 and 2–14 was seen. Whole genome sequencing (WGS) revealed that only a limited number of STs were detected, and they were consistent at specific locations over time. This study showed that environmental surveillance data in combination with available typing techniques and WGS can give the municipality a better tool for risk management and an overview of ST distributions that can be a valuable asset in future source investigations.publishedVersio

    The first vanE-type vancomycin resistant Enterococcus faecalis isolates in Norway – phenotypic and molecular characteristics

    Get PDF
    Objectives - We aimed to characterize the vanE cluster and its genetic support in the first Norwegian vanE-type isolates and assess genetic relatedness to other vanE isolates. Methods - Two vanE-type vancomycin resistant Enterococcus faecalis (vanE-VREfs) isolates (E1 and E2) recovered from the same patient 30 months apart were examined for antimicrobial susceptibility, genome sequence, vancomycin resistance induction, vanE transferability, genome mutation rate, and phylogenetic relationship to E. faecalis closed genomes and two vanE-VREfs from North America. Results - The ST34 E1 and E2 strains expressed low-level vancomycin resistance and susceptibility to teicoplanin. Their vanE gene clusters were part of a non-transferable Tn6202. The histidine kinase part of vanSE was expressed although a premature stop codon (E1) and insertion of a transposase (E2) truncated their vanSE gene. The vancomycin resistance phenotype in E1 was inducible while constitutive in E2. E1 showed a 125-fold higher mutation rate than E2. Variant calling showed 60 variants but nearly identical chromosomal gene content and synteny between the isolates. Their genomes also showed high similarity to another ST34 vanE-VREfs from Canada. Conclusion - In-depth genomic analyses of the first two vanE-VREfs found in Europe identified a single chromosomal insertion site of two variants of vanE-conferring Tn6202. Single nucleotide polymorphism (SNP) and core genome multilocus sequence type (cgMLST) analyses show the genomes are different. This can be explained by the high mutation rate of E1 and acquisition of different mobile genetic elements; thus, we believe the two isolates from the same patient are genetically related. Genome similarities also suggest relatedness between the Canadian and Norwegian vanE-VREfs

    Long-read sequencing for reliably calling the mompS allele in Legionella pneumophila sequence-based typing

    Get PDF
    Sequence-based typing (SBT) of Legionella pneumophila is a valuable tool in epidemiological studies and outbreak investigations of Legionnaires’ disease. In the L. pneumophila SBT scheme, mompS2 is one of seven genes that determine the sequence type (ST). The Legionella genome typically contains two copies of mompS (mompS1 and mompS2). When they are non-identical it can be challenging to determine the mompS2 allele, and subsequently the ST, from Illumina short-reads. In our collection of 233 L. pneumophila genomes, there were 62 STs, 18 of which carried non-identical mompS copies. Using short-reads, the mompS2 allele was misassembled or untypeable in several STs. Genomes belonging to ST154 and ST574, which carried mompS1 allele 7 and mompS2 allele 15, were assigned an incorrect mompS2 allele and/or mompS gene copy number when short-read assembled. For other isolates, mainly those carrying non-identical mompS copies, short-read assemblers occasionally failed to resolve the structure of the mompS-region, also resulting in untypeability from the short-read data. In this study, we wanted to understand the challenges we observed with calling the mompS2 allele from short-reads, assess if other short-read methods were able to resolve the mompS-region, and investigate the possibility of using long-reads to obtain the mompS alleles, and thereby perform L. pneumophila SBT from long-reads only. We found that the choice of short-read assembler had a major impact on resolving the mompS-region and thus SBT from short-reads, but no method consistently solved the mompS2 allele. By using Oxford Nanopore Technology (ONT) sequencing together with Trycycler and Medaka for long-read assembly and polishing we were able to resolve the mompS copies and correctly identify the mompS2 allele, in accordance with Sanger sequencing/EQA results for all tested isolates (n=35). The remaining six genes of the SBT profile could also be determined from the ONT-only reads. The STs called from ONT-only assemblies were also consistent with hybrid-assemblies of Illumina and ONT reads. We therefore propose ONT sequencing as an alternative method to perform L. pneumophila SBT to overcome the mompS challenge observed with short-reads. To facilitate this, we have developed ONTmompS (https://github.com/marithetland/ONTmompS), an in silico approach to determine L. pneumophila ST from long-read or hybrid assemblies.publishedVersio

    Population dynamics and characteristics of Klebsiella pneumoniae from healthy poultry in Norway

    Get PDF
    Klebsiella pneumoniae is an important opportunistic pathogen widely studied in relation to human infection and colonization. However, there is a lack of knowledge regarding other niches that K. pneumoniae may inhabit. K. pneumoniae isolated from healthy broiler and turkey flocks in Norway in 2018 have previously been described with regard to population structure, sequence types (STs), and the presence of virulence- and antimicrobial resistance (AMR) genes. In the present study we aimed to evaluate the dynamics of the K. pneumoniae population in poultry over time, with regards to AMR and virulence, and with a special focus on persistence of STs. A total of 391 flocks sampled in 2020 were included in the present study, of which 271 were from broiler flocks and 120 from turkey flocks. Similar to findings from 2018, the occurrence of K. pneumoniae was significantly higher based on culturing in turkey flocks (62.5%) compared to broiler flocks (24.0%). Major STs in 2020 included ST5827 (n = 7), ST37 (n = 7), ST370 (n = 7), ST17 (n = 5), and ST4710 (n = 5). Several STs persisted over time in both host species, including ST35, ST37, ST590, and ST17. This persistence may be due to local re-circulation or reintroduction from parent flocks. Of these five major STs, only ST590 carried AMR genes, indicating that the persistence was not associated with the presence of AMR genes. An ST4710 strain with a hypervirulence-encoding plasmid (p4710; iro5, iuc5) was recovered from turkeys in 2018. The same strain was present in turkeys in 2020, but the plasmid had lost the salmochelin locus. This loss may be attributed to reductive evolution due to the presence of several siderophores within the same isolates. In this study we also characterized a clinical ST4710 isolate from a turkey with airsacculitis. The isolate was closely related to two intestinal ST4710 isolates from healthy turkeys in 2018. These three isolates were sampled within the same location and time frame in 2018, and all carried the full p4710 virulence plasmid. These findings highlight the transmission- and infectious potential of ST4710 in turkeys.publishedVersio

    Highly conserved composite transposon harbouring aerobactin iuc3 in Klebsiella pneumoniae from pigs

    Get PDF
    Klebsiella pneumoniae is an important opportunistic pathogen associated with severe invasive disease in humans. Hypervirulent K. pneumoniae, which are K. pneumoniae with several acquired virulence determinants such as the siderophore aerobactin and others, are more prominent in countries in South and South-East Asia compared to European countries. This Klebsiella pathotype is capable of causing liver abscesses in immunocompetent persons in the community. K. pneumoniae has not been extensively studied in non-human niches. In the present study, K. pneumoniae isolated from caecal samples (n=299) from healthy fattening pigs in Norway were characterized with regard to population structure and virulence determinants. These data were compared to data from a previous study on K. pneumoniae from healthy pigs in Thailand. Lastly, an in-depth plasmid study on K. pneumoniae with aerobactin was performed. Culturing and whole-genome sequencing was applied to detect, confirm and characterize K. pneumoniae isolates. Phylogenetic analysis described the evolutionary relationship and diversity of the isolates, while virulence determinants and sequence types were detected with Kleborate. Long-read sequencing was applied to obtain the complete sequence of virulence plasmids harbouring aerobactin. A total of 48.8 % of the investigated Norwegian pig caecal samples (n=299) were positive for K. pneumoniae. Acquired virulence determinants were detected in 72.6 % of the isolates, the most prominent being aerobactin (69.2 %), all of which were iuc3. In contrast, only 4.6 % of the isolates from Thailand harboured aerobactin. The aerobactin operon was located on potentially conjugative IncFIBK/FIIK plasmids of varying sizes in isolates from both countries. A putative, highly conserved composite transposon with a mean length of 16.2 kb flanked by truncated IS3-family IS407-group insertion sequences was detected on these plasmids, harbouring the aerobactin operon as well as several genes that may confer increased fitness in mammalian hosts. This putative composite transposon was also detected in plasmids harboured by K. pneumoniae from several countries and sources, such as human clinical samples. The high occurrence of K. pneumoniae harbouring aerobactin in Norwegian pigs, taken together with international data, suggest that pigs are a reservoir for K. pneumoniae with iuc3. Truncation of the flanking ISKpn78-element suggest that the putative composite transposon has been permanently integrated into the plasmid, and that it is no longer mobilizable.publishedVersio

    Exploring Klebsiella pneumoniae in Healthy Poultry Reveals High Genetic Diversity, Good Biofilm-Forming Abilities and Higher Prevalence in Turkeys Than Broilers

    Get PDF
    Klebsiella pneumoniae is a well-studied human pathogen for which antimicrobial resistant and hypervirulent clones have emerged globally. K. pneumoniae is also present in a variety of environmental niches, but currently there is a lack of knowledge on the occurrence and characteristics of K. pneumoniae from non-human sources. Certain environmental niches, e.g., animals, may be associated with high K. pneumoniae abundance, and these can constitute a reservoir for further transmission of strains and genetic elements. The aim of this study was to explore and characterize K. pneumoniae from healthy broilers and turkeys. A total of 511 cecal samples (broiler n = 356, turkey n = 155), included in the Norwegian monitoring program for antimicrobial resistance (AMR) in the veterinary sector (NORM-VET) in 2018, were screened for K. pneumoniae by culturing on SCAI agar. K. pneumoniae was detected in 207 (40.5%) samples. Among the broiler samples, 25.8% were positive for K. pneumoniae, in contrast to turkey with 74.2% positive samples (p < 0.01). Antibiotic susceptibility testing was performed, in addition to investigating biofilm production. Whole genome sequencing was performed on 203 K. pneumoniae isolates, and analysis was performed utilizing comparative genomics tools. The genomes grouped into 66 sequence types (STs), with ST35, ST4710 and ST37 being the most prevalent at 13.8%, 7.4%, and 5.4%, respectively. The overall AMR occurrence was low, with only 11.3% of the isolates showing both pheno- and genotypic resistance. Genes encoding aerobactin, salmochelin or yersiniabactin were detected in 47 (23.2%) genomes. Fifteen hypervirulent genomes belonging to ST4710 and isolated from turkey were identified. These all encoded the siderophore virulence loci iuc5 and iro5 on an IncF plasmid. Isolates from both poultry species displayed good biofilm-forming abilities with an average of OD595 0.69 and 0.64. To conclude, the occurrence of K. pneumoniae in turkey was significantly higher than in broiler, indicating that turkey might be an important zoonotic reservoir for K. pneumoniae compared to broilers. Furthermore, our results show a highly diverse K. pneumoniae population in poultry, low levels of antimicrobial resistance, good biofilm-forming abilities and a novel hypervirulent ST4710 clone circulating in the turkey population

    Emergence and rapid global dissemination of CTX-M-15-associated Klebsiella pneumoniae strain ST307

    Get PDF
    Objectives: Recent reports indicate the emergence of a new carbapenemase-producing Klebsiella pneumoniae clone, ST307. We sought to better understand the global epidemiology and evolution of this clone and evaluate its association with antimicrobial resistance (AMR) genes. Methods: We collated information from the literature and public databases and performed a comparative analysis of 95 ST307 genomes (including 37 that were newly sequenced). Results: We show that ST307 emerged in the mid-1990s (nearly 20 years prior to its first report), is already globally distributed and is intimately associated with a conserved plasmid harbouring the blaCTX-M-15 ESBL gene and several other AMR determinants. Conclusions: Our findings support the need for enhanced surveillance of this widespread ESBL clone in which carbapenem resistance has occasionally emerged.publishedVersio

    Community carriage of ESBL-producing Escherichia coli and Klebsiella pneumoniae: a cross-sectional study of risk factors and comparative genomics of carriage and clinical isolates

    Get PDF
    The global prevalence of infections caused by extended-spectrum βlactamase-producing Enterobacterales (ESBL-E) is increasing, and for Escherichia coli, observations indicate that this is partly driven by community-onset cases. The ESBL-E population structure in the community is scarcely described, and data on risk factors for carriage are conflicting. Here, we report the prevalence and population structure of fecal ESBL-producing E. coli and Klebsiella pneumoniae (ESBL-Ec/Kp) in a general adult population, examine risk factors, and compare carriage isolates with contemporary clinical isolates. Fecal samples obtained from 4,999 participants (54% women) ≥40 years in the seventh survey of the population-based Tromsø Study, Norway (2015, 2016), were screened for ESBL-Ec/Kp. In addition, we included 118 ESBL-Ec clinical isolates from the Norwegian surveillance program in 2014. All isolates were wholegenome sequenced. Risk factors associated with carriage were analyzed using multivariable logistic regression. ESBL-Ec gastrointestinal carriage prevalence was 3.3% [95% confidence interval (CI) 2.8%–3.9%, no sex difference] and 0.08% (0.02%–0.20%) for ESBL-Kp. For ESBL-Ec, travel to Asia was the only independent risk factor (adjusted odds ratio 3.46, 95% CI 2.18–5.49). E. coli ST131 was most prevalent in both collections. However, the ST131 proportion was significantly lower in carriage (24%) versus clinical isolates (58%, P < 0.001). Carriage isolates were genetically more diverse with a higher proportion of phylogroup A (26%) than clinical isolates (5%, P < 0.001), indicating that ESBL gene acquisition occurs in a variety of E. coli lineages colonizing the gut. STs commonly related to extraintestinal infections were more frequent in clinical isolates also carrying a higher prevalence of antimicrobial resistance, which could indicate clone-associated pathogenicity
    corecore