1,732 research outputs found
Shear-band arrest and stress overshoots during inhomogeneous flow in a metallic glass
At the transition from a static to a dynamic deformation regime of a shear band in bulk metallic glasses, stress transients in terms of overshoots are observed. We interpret this phenomenon with a repeated shear-melting transition and are able to access a characteristic time for a liquidlike to solidlike transition in the shear band as a function of temperature, enabling us to understand why shear bands arrest during inhomogenous serrated flow in bulk metallic glasses
Ensemble versus individual system in quantum optics
Modern techniques allow experiments on a single atom or system, with new
phenomena and new challenges for the theoretician. We discuss what quantum
mechanics has to say about a single system. The quantum jump approach as well
as the role of quantum trajectories are outlined and a rather sophisticated
example is given.Comment: Fundamental problems in quantum theory workshop, invited lecture. 11
pages Latex + 7 figures. To appear in Fortschr. d. Physi
Multi-dimensional laser spectroscopy of exciton-polaritons with spatial light modulators
We describe an experimental system that allows one to easily access the
dispersion curve of exciton-polaritons in a microcavity. Our approach is based
on two spatial light modulators (SLM), one for changing the excitation angles
(momenta), and the other for tuning the excitation wavelength. We show that
with this setup, an arbitrary number of states can be excited accurately and
that re-configuration of the excitation scheme can be done at high speed.Comment: 4 pages, 5 figure
Recommended from our members
Geometric Multicut
We study the following separation problem: Given a collection of colored objects in the plane, compute a shortest âfenceâ F, i.e., a union of curves of minimum total length, that separates every two objects of different colors. Two objects are separated if F contains a simple closed curve that has one object in the interior and the other in the exterior. We refer to the problem as GEOMETRIC k-CUT, where k is the number of different colors, as it can be seen as a geometric analogue to the well-studied multicut problem on graphs. We first give an O(n4log3n)-time algorithm that computes an optimal fence for the case where the input consists of polygons of two colors and n corners in total. We then show that the problem is NP-hard for the case of three colors. Finally, we give a (2â4/3k)-approximation algorithm
Convenient synthesis and application of versatile nucleic acid lipid membrane anchors in the assembly and fusion of liposomes
Hydrophobic moieties like lipid membrane anchors are highly demanded modifications for nucleic acid oligomers.</p
A hybrid camphor-camphene wax material for studies on self-propelled motion.
A new material that combines self-propelled motion with wax-like mechanical properties and can be formed into non-trivial shapes is presented
Fiber transport of spatially entangled photons
Entanglement in the spatial degrees of freedom of photons is an interesting
resource for quantum information. For practical distribution of such entangled
photons it is desireable to use an optical fiber, which in this case has to
support multiple transverse modes. Here we report the use of a hollow-core
photonic crystal fiber to transport spatially entangled qubits.Comment: 4 pages, 4 figure
Determination of the Carrier-Envelope Phase of Few-Cycle Laser Pulses with Terahertz-Emission Spectroscopy
The availability of few-cycle optical pulses opens a window to physical
phenomena occurring on the attosecond time scale. In order to take full
advantage of such pulses, it is crucial to measure and stabilise their
carrier-envelope (CE) phase, i.e., the phase difference between the carrier
wave and the envelope function. We introduce a novel approach to determine the
CE phase by down-conversion of the laser light to the terahertz (THz) frequency
range via plasma generation in ambient air, an isotropic medium where optical
rectification (down-conversion) in the forward direction is only possible if
the inversion symmetry is broken by electrical or optical means. We show that
few-cycle pulses directly produce a spatial charge asymmetry in the plasma. The
asymmetry, associated with THz emission, depends on the CE phase, which allows
for a determination of the phase by measurement of the amplitude and polarity
of the THz pulse
- âŠ