25 research outputs found
Soft two-meson-exchange nucleon-nucleon potentials. I. Planar and crossed-box diagrams
Pion-meson-exchange nucleon-nucleon potentials are derived for two nucleons
in the intermediate states. The mesons we include are (i) pseudoscalar mesons:
; (ii) vector mesons: ; (iii) scalar
mesons: ; and (iv) the
contribution from the Pomeron. Strong dynamical pair suppression is assumed,
and at the nucleon-nucleon-meson vertices Gaussian form factors are
incorporated into the relativistic two-body framework using a dispersion
representation for the pion- and meson-exchange amplitudes. The Fourier
transformations are performed using factorization techniques for the energy
denominators. The potentials are first calculated in the adiabatic
approximation to all planar and crossed three-dimensional momentum-space
-meson diagrams. Next, we calculate the corrections.Comment: 28 pages RevTeX, 8 postscript figures; revised version as to appear
in Phys. Rev.
"Dark energy" in the Local Void
The unexpected discovery of the accelerated cosmic expansion in 1998 has
filled the Universe with the embarrassing presence of an unidentified "dark
energy", or cosmological constant, devoid of any physical meaning. While this
standard cosmology seems to work well at the global level, improved knowledge
of the kinematics and other properties of our extragalactic neighborhood
indicates the need for a better theory. We investigate whether the recently
suggested repulsive-gravity scenario can account for some of the features that
are unexplained by the standard model. Through simple dynamical considerations,
we find that the Local Void could host an amount of antimatter
() roughly equivalent to the mass of a typical
supercluster, thus restoring the matter-antimatter symmetry. The antigravity
field produced by this "dark repulsor" can explain the anomalous motion of the
Local Sheet away from the Local Void, as well as several other properties of
nearby galaxies that seem to require void evacuation and structure formation
much faster than expected from the standard model. At the global cosmological
level, gravitational repulsion from antimatter hidden in voids can provide more
than enough potential energy to drive both the cosmic expansion and its
acceleration, with no need for an initial "explosion" and dark energy.
Moreover, the discrete distribution of these dark repulsors, in contrast to the
uniformly permeating dark energy, can also explain dark flows and other
recently observed excessive inhomogeneities and anisotropies of the Universe.Comment: 6 pages, accepted as a Letter to the Editor by Astrophysics and Space
Scienc
Masonry dams : analysis of the historical profiles of Sazilly, Delocre and Rankine
The significant advances in masonry dam design that took place in the second half of the 19th century are analyzed and discussed within the context of the historical development of dam construction. Particular reference is made to the gravity dam profiles proposed by Sazilly, Delocre and Rankine, who pioneered the application of engineering concepts to dam design, basing the dam profile on the allowable stresses for the conditions of empty and full reservoir. These historical profiles are analyzed taking into consideration the present safety assessment procedures, by means of a numerical application developed for this purpose, based on limit analysis equilibrium methods, which considers the sliding failure mechanisms, the most critical for these structures. The study underlines the key role of uplift pressures, which was only addressed by Lévy after the accident of Bouzey dam, and provides a critical understanding of the original design concepts, which is essential for the rehabilitation of these historical structures.This work has been funded by FCT (Portuguese Foundation for Science and Technology) through the PhD grant SFRH/BD/43585/2008, for which the first author is grateful