3 research outputs found

    Cosmic Ray Acceleration by Spiral Shocks in the Galactic Wind

    Full text link
    Cosmic ray acceleration by shocks related with Slipping Interaction Regions (SIRs) in the Galactic Wind is considered. SIRs are similar to Solar Wind Corotating Interaction Regions. The spiral structure of our Galaxy results in a strong nonuniformity of the Galactic Wind flow and in SIR formation at distances of 50 to 100 kpc. SIRs are not corotating with the gas and magnetic field because the angular velocity of the spiral pattern differs from that of the Galactic rotation. It is shown that the collective reacceleration of the cosmic ray particles with charge ZeZe in the resulting shock ensemble can explain the observable cosmic ray spectrum beyond the "knee" up to energies of the order of 1017Z10^{17}Z eV. For the reaccelerated particles the Galactic Wind termination shock acts as a reflecting boundary.Comment: LATEX, 14 pages, 7 figures, accepted to A&

    On the circum(sub)stellar environment of brown dwarfs in Taurus

    Get PDF
    Aims : We want to investigate whether brown dwarfs (BDs) form like stars or are ejected embryos. We study the presence of disks around BDs in the Taurus cloud, and discuss implications for substellar formation models. Methods : We use photometric measurements from the visible to the far infrared to determine the spectral energy distributions (SEDs) of Taurus BDs. Results: We use Spitzer color indices, Halpha as an accretion indicator, and models fit to the SEDs in order to estimate physical parameters of the disks around these BDs. We study the spatial distribution of BDs with and without disks across the Taurus aggregates, and we find that BDs with and without disks are not distributed regularly across the Taurus cloud. Conclusions: We find that 48%+/- 14% of Taurus BDs have a circumstellar disk signature, a ratio similar to recent results from previous authors in other regions. We fit the SEDs and find that none of the disks around BDs in Taurus can be fitted convincingly with a flaring index beta = 0, indicating that heating by the central object is efficient and that the disks we observe retain a significant amount of gas. We find that BDs with disks are proportionally more numerous in the northern Taurus filament, possibly the youngest filament. We do not find such a clear segregation for classical T Tauri stars (CTTS) and weak-lined T Tauri stars (WTTS), suggesting that, in addition to the effects of evolution, any segregation effects could be related to the mass of the object. A by-product of our study is to propose a recalibration of the Barrado y Navascues & Martin (2003) accretion limit in the substellar domain. The global shape of the limit fits our data points if it is raised by a factor 1.25-1.30.Comment: 11 pages, 5 figures, A&A accepte
    corecore