20 research outputs found
InfoMax Bayesian learning of the Furuta pendulum
We have studied the InfoMax (D-optimality) learning for the two-link Furuta pendulum. We compared InfoMax and random learning methods. The InfoMax learning method won by a large margin, it visited a larger domain and provided better approximation during the same time interval. The advantages and the limitations of the InfoMax solution are treated
LightSpeed: Light and Fast Neural Light Fields on Mobile Devices
Real-time novel-view image synthesis on mobile devices is prohibitive due to
the limited computational power and storage. Using volumetric rendering
methods, such as NeRF and its derivatives, on mobile devices is not suitable
due to the high computational cost of volumetric rendering. On the other hand,
recent advances in neural light field representations have shown promising
real-time view synthesis results on mobile devices. Neural light field methods
learn a direct mapping from a ray representation to the pixel color. The
current choice of ray representation is either stratified ray sampling or
Plucker coordinates, overlooking the classic light slab (two-plane)
representation, the preferred representation to interpolate between light field
views. In this work, we find that using the light slab representation is an
efficient representation for learning a neural light field. More importantly,
it is a lower-dimensional ray representation enabling us to learn the 4D ray
space using feature grids which are significantly faster to train and render.
Although mostly designed for frontal views, we show that the light-slab
representation can be further extended to non-frontal scenes using a
divide-and-conquer strategy. Our method offers superior rendering quality
compared to previous light field methods and achieves a significantly improved
trade-off between rendering quality and speed.Comment: Project Page: http://lightspeed-r2l.github.io/ . Add camera ready
versio
3D shape estimation in video sequences provides high precision evaluation of facial expressions
Abstract Person independent and pose invariant estimation of facial expressions and action unit (AU) intensity estimation is important for situation analysis and for automated video annotation. We evaluated raw 2D shape data of the CK+ database, used Procrustes transformation and the multi-class SVM leave-one-out method for classification. We found close to 100% performance demonstrating the relevance and the strength of details of the shape. Precise 3D shape information was computed by means of Constrained Local Models (CLM) on video sequences. Such sequences offer the opportunity to compute a time-averaged '3D Personal Mean Shape' (PMS) from the estimated CLM shapes, which -upon subtraction -gives rise to person independent emotion estimation. On CK+ data PMS showed significant improvements over AU0 normalization; performance reached and sometimes surpassed state-ofthe-art results on emotion classification and on AU intensity estimation. 3D PMS from 3D CLM offers pose invariant emotion estimation that we studied by rendering a 3D emotional database for different poses and different subjects from the BU 4DFE database. Frontal shapes derived from CLM fits of the 3D shape were evaluated. Results demonstrate that shape estimation alone can be used for robust, high quality pose invariant emotion classification and AU intensity estimation
Unsupervised Learning Facial Parameter Regressor for Action Unit Intensity Estimation via Differentiable Renderer
Facial action unit (AU) intensity is an index to describe all visually
discernible facial movements. Most existing methods learn intensity estimator
with limited AU data, while they lack generalization ability out of the
dataset. In this paper, we present a framework to predict the facial parameters
(including identity parameters and AU parameters) based on a bone-driven face
model (BDFM) under different views. The proposed framework consists of a
feature extractor, a generator, and a facial parameter regressor. The regressor
can fit the physical meaning parameters of the BDFM from a single face image
with the help of the generator, which maps the facial parameters to the
game-face images as a differentiable renderer. Besides, identity loss, loopback
loss, and adversarial loss can improve the regressive results. Quantitative
evaluations are performed on two public databases BP4D and DISFA, which
demonstrates that the proposed method can achieve comparable or better
performance than the state-of-the-art methods. What's more, the qualitative
results also demonstrate the validity of our method in the wild
Emotional expression classification using time-series kernels
Abstract Estimation of facial expressions, as spatio-temporal processes, can take advantage of kernel methods if one considers facial landmark positions and their motion in 3D space. We applied support vector classification with kernels derived from dynamic time-warping similarity measures. We achieved over 99% accuracy -measured by area under ROC curve -using only the 'motion pattern' of the PCA compressed representation of the marker point vector, the so-called shape parameters. Beyond the classification of full motion patterns, several expressions were recognized with over 90% accuracy in as few as 5-6 frames from their onset, about 200 milliseconds
Emotional Expression Classification using Time-Series Kernels ∗
Estimation of facial expressions, as spatio-temporal processes, can take advantage of kernel methods if one considers facial landmark positions and their motion in 3D space. We applied support vector classification with kernels derived from dynamic time-warping similarity measures. We achieved over 99 % accuracy – measured by area under ROC curve – using only the ’motion pattern ’ of the PCA compressed representation of the marker point vector, the so-called shape parameters. Beyond the classification of full motion patterns, several expressions were recognized with over 90 % accuracy in as few as 5-6 frames from their onset, about 200 milliseconds. cial interaction. For effective human-computer interaction, automated facial expression analysis is important. 1