21 research outputs found
E119D Neuraminidase Mutation Conferring Pan-Resistance to Neuraminidase Inhibitors in an A(H1N1)pdm09 Isolate From a Stem-Cell Transplant Recipient
Background. An influenza A(H1N1)pdm09 infection was diagnosed in a hematopoietic stem cell transplant recipient during conditioning regimen. He was treated with oral oseltamivir, later combined with intravenous zanamivir. The H275Y neuraminidase (NA) mutation was first detected, and an E119D NA mutation was identified during zanamivir therapy. Methods. Recombinant wild-type (WT) E119D and E119D/H275Y A(H1N1)pdm09 NA variants were generated by reverse genetics. Susceptibility to NA inhibitors (NAIs) was evaluated with a fluorometric assay using the 2′-(4-methylumbelliferyl)-α-d-N-acetylneuraminic acid (MUNANA) substrate. Susceptibility to favipiravir (T-705) was assessed using plaque reduction assays. The NA affinity and velocity values were determined with NA enzymatic studies. Results. We identified an influenza A(H1N1)pdm09 E119D mutant that exhibited a marked increase in the 50% inhibitory concentrations against all tested NAIs (827-, 25-, 286-, and 702-fold for zanamivir, oseltamivir, peramivir, and laninamivir, respectively). The double E119D/H275Y mutation further increased oseltamivir and peramivir 50% inhibitory concentrations by 790- and >5000-fold, respectively, compared with the WT. The mutant viruses remained susceptible to favipiravir. The NA affinity and velocity values of the E119D variant decreased by 8.1-fold and 4.5-fold, respectively, compared with the WT. Conclusions. The actual emergence of a single NA mutation conferring pan-NAI resistance in the clinical setting reinforces the pressing need to develop new anti-influenza strategie
Best Practice Recommendations for the Diagnosis and Management of Children With Pediatric Inflammatory Multisystem Syndrome Temporally Associated With SARS-CoV-2 (PIMS-TS; Multisystem Inflammatory Syndrome in Children, MIS-C) in Switzerland.
Background: Following the spread of the coronavirus disease 2019 (COVID-19) pandemic a new disease entity emerged, defined as Pediatric Inflammatory Multisystem Syndrome temporally associated with COVID-19 (PIMS-TS), or Multisystem Inflammatory Syndrome in Children (MIS-C). In the absence of trials, evidence for treatment remains scarce. Purpose: To develop best practice recommendations for the diagnosis and treatment of children with PIMS-TS in Switzerland. It is acknowledged that the field is changing rapidly, and regular revisions in the coming months are pre-planned as evidence is increasing. Methods: Consensus guidelines for best practice were established by a multidisciplinary group of Swiss pediatric clinicians with expertise in intensive care, immunology/rheumatology, infectious diseases, hematology, and cardiology. Subsequent to literature review, four working groups established draft recommendations which were subsequently adapted in a modified Delphi process. Recommendations had to reach >80% agreement for acceptance. Results: The group achieved agreement on 26 recommendations, which specify diagnostic approaches and interventions across anti-inflammatory, anti-infectious, and support therapies, and follow-up for children with suspected PIMS-TS. A management algorithm was derived to guide treatment depending on the phenotype of presentation, categorized into PIMS-TS with (a) shock, (b) Kawasaki-disease like, and (c) undifferentiated inflammatory presentation. Conclusion: Available literature on PIMS-TS is limited to retrospective or prospective observational studies. Informed by these cohort studies and indirect evidence from other inflammatory conditions in children and adults, as well as guidelines from international health authorities, the Swiss PIMS-TS recommendations represent best practice guidelines based on currently available knowledge to standardize treatment of children with suspected PIMS-TS. Given the absence of high-grade evidence, regular updates of the recommendations will be warranted, and participation of patients in trials should be encouraged
COVID-19 in children and adolescents in Europe: a multinational, multicentre cohort study
Background
To date, few data on paediatric COVID-19 have been published, and most reports originate from China. This study aimed to capture key data on children and adolescents with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection across Europe to inform physicians and health-care service planning during the ongoing pandemic.
Methods
This multicentre cohort study involved 82 participating health-care institutions across 25 European countries, using a well established research network—the Paediatric Tuberculosis Network European Trials Group (ptbnet)—that mainly comprises paediatric infectious diseases specialists and paediatric pulmonologists. We included all individuals aged 18 years or younger with confirmed SARS-CoV-2 infection, detected at any anatomical site by RT-PCR, between April 1 and April 24, 2020, during the initial peak of the European COVID-19 pandemic. We explored factors associated with need for intensive care unit (ICU) admission and initiation of drug treatment for COVID-19 using univariable analysis, and applied multivariable logistic regression with backwards stepwise analysis to further explore those factors significantly associated with ICU admission.
Findings
582 individuals with PCR-confirmed SARS-CoV-2 infection were included, with a median age of 5·0 years (IQR 0·5–12·0) and a sex ratio of 1·15 males per female. 145 (25%) had pre-existing medical conditions. 363 (62%) individuals were admitted to hospital. 48 (8%) individuals required ICU admission, 25 (4%) mechanical ventilation (median duration 7 days, IQR 2–11, range 1–34), 19 (3%) inotropic support, and one (<1%) extracorporeal membrane oxygenation. Significant risk factors for requiring ICU admission in multivariable analyses were being younger than 1 month (odds ratio 5·06, 95% CI 1·72–14·87; p=0·0035), male sex (2·12, 1·06–4·21; p=0·033), pre-existing medical conditions (3·27, 1·67–6·42; p=0·0015), and presence of lower respiratory tract infection signs or symptoms at presentation (10·46, 5·16–21·23; p<0·0001). The most frequently used drug with antiviral activity was hydroxychloroquine (40 [7%] patients), followed by remdesivir (17 [3%] patients), lopinavir–ritonavir (six [1%] patients), and oseltamivir (three [1%] patients). Immunomodulatory medication used included corticosteroids (22 [4%] patients), intravenous immunoglobulin (seven [1%] patients), tocilizumab (four [1%] patients), anakinra (three [1%] patients), and siltuximab (one [<1%] patient). Four children died (case-fatality rate 0·69%, 95% CI 0·20–1·82); at study end, the remaining 578 were alive and only 25 (4%) were still symptomatic or requiring respiratory support.
Interpretation
COVID-19 is generally a mild disease in children, including infants. However, a small proportion develop severe disease requiring ICU admission and prolonged ventilation, although fatal outcome is overall rare. The data also reflect the current uncertainties regarding specific treatment options, highlighting that additional data on antiviral and immunomodulatory drugs are urgently needed.
Funding
ptbnet is supported by Deutsche Gesellschaft für Internationale Zusammenarbeit
Recommended from our members
T-cell responses following Natural Influenza Infection or Vaccination in Solid Organ Transplant Recipients.
Little is known about cell-mediated immune responses to natural influenza infection in solid organ transplant (SOT) patients. The aim of our study was to evaluate the CD4+ and CD8+ responses to influenza A and B infection in a cohort of SOT patients. We collected peripheral blood mononuclear cells at influenza diagnosis and four weeks later from 31 SOT patients during the 2017-2018 influenza season. Infection-elicited influenza-specific CD4+ and CD8+ T-cell responses were measured using flow cytometry and intracellular cytokine staining and compared to responses following influenza vaccine in SOT patients. Natural infection was associated with a significant increase in CD4+ T-cell responses. For example, polyfunctional cells increased from 21 to 782 and from 193 to 1436 cells per 106 CD4+ T-cells among influenza A/H3N2 and B-infected patients (p = 0.006 and 0.004 respectively). Moreover, infection-elicited CD4+ responses were superior than vaccine-elicited responses for influenza A/H1N1 (931 vs 1; p = 0.026), A/H3N2 (647 vs 1; p = 0.041) and B (619 vs 1; p = 0.004). Natural influenza infection triggers a significant increase in CD4+ T-cell responses in SOT patients. Infection elicits significantly stronger CD4+ responses compared to the influenza vaccine and thereby likely elicits better protection against reinfection
Clinical sensitivity and specificity of a high-throughput microfluidic nano-immunoassay combined with capillary blood microsampling for the identification of anti-SARS-CoV-2 Spike IgG serostatus.
ObjectivesWe evaluate the diagnostic performance of dried blood microsampling combined with a high-throughput microfluidic nano-immunoassay (NIA) for the identification of anti-SARS-CoV-2 Spike IgG seropositivity.MethodsWe conducted a serological study among 192 individuals with documented prior SARS-CoV-2 infection and 44 SARS-CoV-2 negative individuals. Participants with prior SARS-CoV-2 infection had a long interval of 11 months since their qRT-PCR positive test. Serum was obtained after venipuncture and tested with an automated electrochemiluminescence anti-SARS-CoV-2 S total Ig reference assay, a commercial ELISA anti-S1 IgG assay, and the index test NIA. In addition, 109 participants from the positive cohort and 44 participants from the negative cohort participated in capillary blood collection using three microsampling devices: Mitra, repurposed glucose test strips, and HemaXis. Samples were dried, shipped by regular mail, extracted, and measured with NIA.ResultsUsing serum samples, we achieve a clinical sensitivity of 98·33% and specificity of 97·62% on NIA, affirming the high performance of NIA in participants 11 months post infection. Combining microsampling with NIA, we obtain a clinical sensitivity of 95·05% using Mitra, 61·11% using glucose test strips, 83·16% using HemaXis, and 91·49% for HemaXis after automated extraction, without any drop in specificity.DiscussionHigh sensitivity and specificity was demonstrated when testing micro-volume capillary dried blood samples using NIA, which is expected to facilitate its use in large-scale studies using home-based sampling or samples collected in the field
Antibody response in children with multisystem inflammatory syndrome related to COVID-19 (MIS-C) compared to children with uncomplicated COVID-19.
To comprehensively analyze the quality of the antibody response between children with Multisystem inflammatory syndrome (MIS-C) and age-matched controls at one month after SARS-CoV-2 exposure, and infected in the same time-period.info:eu-repo/semantics/publishe
Molecular epidemiology of human rhinoviruses and enteroviruses highlights their diversity in sub-Saharan Africa
Human rhinoviruses (HRVs) and enteroviruses (HEVs) belong to the Enterovirus genus and are the most frequent cause of infection worldwide, but data on their molecular epidemiology in Africa are scarce. To understand HRV and HEV molecular epidemiology in this setting, we enrolled febrile pediatric patients participating in a large prospective cohort assessing the causes of fever in Tanzanian children. Naso/oropharyngeal swabs were systematically collected and tested by real-time RT-PCR for HRV and HEV. Viruses from positive samples were sequenced and phylogenetic analyses were then applied to highlight the HRV and HEV types as well as recombinant or divergent strains. Thirty-eight percent (378/1005) of the enrolled children harboured an HRV or HEV infection. Although some types were predominant, many distinct types were co-circulating, including a vaccinal poliovirus, HEV-A71 and HEV-D68. Three HRV-A recombinants were identified: HRV-A36/HRV-A67, HRV-A12/HRV-A67 and HRV-A96/HRV-A61. Four divergent HRV strains were also identified: one HRV-B strain and three HRV-C strains. This is the first prospective study focused on HRV and HEV molecular epidemiology in sub-Saharan Africa. This systematic and thorough large screening with careful clinical data management confirms the wide genomic diversity of these viruses, brings new insights about their evolution and provides data about associated symptoms
Safety and Immunogenicity of Adjuvanted Recombinant Subunit Herpes Zoster Vaccine in Lung Transplant Recipients.
Lung transplant recipients are at high risk for herpes zoster and preventive measures are a significant unmet need. We investigated the safety and immunogenicity of two doses of a recombinant zoster vaccine (RZV) in lung transplant recipients (≥50 years). We enrolled 50 patients of which 49 received at least one vaccine dose. Anti-glycoprotein E (gE) antibody levels (n=43) increased significantly compared to baseline (median optical density [OD] 1.96; interquartile range [IQR]: 1.17-2.89) after the first (median OD 3.41, IQR 2.54-3.81, p<0.0001) and second vaccine dose (median OD 3.63, IQR 3.39-3.86, p<0.0001). gE-specific polyfunctional CD4+ T-cell frequencies (n=38) also increased from baseline (median 85 per 106 CD4+ T-cells; IQR: 46-180) to the first (median 128 per 106 CD4+ T-cells; IQR: 82-353; p=0.023) and after the second dose (median 361 per 106 CD4+ T-cells; IQR: 146-848; p<0.0001). Tenderness (83.0%; 95%CI:69.2-92.4%) and redness (31.9%; 95%CI:19.1-47.1%) at injection site were common. One rejection episode within three weeks of vaccination was observed. This is the first study demonstrating that RZV was safe and elicited significant humoral and cell mediated immunity in lung transplant recipients. RZV is a new option for the prevention of shingles in this population
SARS-CoV-2 variants of concern in children and adolescents with COVID-19: a systematic review
Objectives Infections by SARS-CoV-2 variants of concern (VOCs) might affect children and adolescents differently than earlier viral lineages. We aimed to address five questions about SARS-CoV-2 VOC infections in children and adolescents: (1) symptoms and severity, (2) risk factors for severe disease, (3) the risk of infection, (4) the risk of transmission and (5) long-term consequences following a VOC infection.Design Systematic review.Data sources The COVID-19 Open Access Project database was searched up to 1 March 2022 and PubMed was searched up to 9 May 2022.Eligibility criteria We included observational studies about Alpha, Beta, Gamma, Delta and Omicron VOCs among ≤18-year-olds. We included studies in English, German, French, Greek, Italian, Spanish and Turkish.Data extraction and synthesis Two reviewers extracted and verified the data and assessed the risk of bias. We descriptively synthesised the data and assessed the risks of bias at the outcome level.Results We included 53 articles. Most children with any VOC infection presented with mild disease, with more severe disease being described with the Delta or the Gamma VOC. Diabetes and obesity were reported as risk factors for severe disease during the whole pandemic period. The risk of becoming infected with a SARS-CoV-2 VOC seemed to increase with age, while in daycare settings the risk of onward transmission of VOCs was higher for younger than older children or partially vaccinated adults. Long-term symptoms following an infection with a VOC were described in <5% of children and adolescents.Conclusion Overall patterns of SARS-CoV-2 VOC infections in children and adolescents are similar to those of earlier lineages. Comparisons between different pandemic periods, countries and age groups should be improved with complete reporting of relevant contextual factors, including VOCs, vaccination status of study participants and the risk of exposure of the population to SARS-CoV-2.PROSPERO registration number CRD42022295207