11 research outputs found
Chemical contamination in fish species from rivers in the North of Luxembourg: Potential impact on the Eurasian otter (Lutra lutra).
Contamination levels of PCBs, and of the heavy metals cadmium (Cd), lead (Pb) and mercury (Hg) were analyzed in four fish species from seven rivers in the North of Luxembourg. During August and September 2007, 85 samples of fish were collected belonging to four species: the stone loach (Barbatula barbatula, n = 12 pools), the chub (Squalius cephalus, n = 36), the barbel (Barbus barbus, n = 23) and eel (Anguilla anguilla, n = 14). The concentration of seven indicator PCBs (P7PCBs) reached a mean of 39 ng g 1 and varied between 4.0 and 346.2 ng g 1 (wet wt) depending on the site and species. Fish collected at Wal- lendorf on the Our River and sites on the Wiltz and the Clerve rivers showed the highest concentrations for PCBs. In comparison with 1994, PCB levels in fish decreased strongly during the last decade in these rivers. Lead was detected at low levels (0–181.4 ng g 1 wet wt). Mercury concentrations ranged between 10.3 and 534.5ngg 1 (wet wt) exceeding maximum tolerable levels for human consumption of 500 ng g 1 in two fish out of 85. Chubs and eels from the Sûre River were the most contaminated by mer- cury. Cadmium levels varied between 4.0 and 103.9 ng g 1 (wet wt). In addition to mercury in fish, cad- mium was the most problematic pollutant on the Our, the Wiltz, the Clerve and the Troine Rivers, because values found in 20% of fish exceeded the threshold of about 10–50 ng g 1 (wet wt) recommended for human health.
The total PCB level predicted to accumulate in livers from otter potentially feeding on these fish based on a previously published mathematical model is 37.7 lg g 1 (lipid wt), which is between a proposed ‘‘safe level” and a ‘‘critical level” for otters. Rivers in the North of Luxembourg are thus to some extent polluted, and the establishment of otter populations could be affected by current levels of contamination.Peer reviewe
Genetic integrity of European wildcats: Variation across biomes mandates geographically tailored conservation strategies
Hybridisation between domestic and wild taxa can pose severe threats to wildlife conservation, and human-induced hybridisation, often linked to species' introductions and habitat degradation, may promote reproductive opportunities between species for which natural interbreeding would be highly unlikely. Using a biome-specific approach, we examine the effects of a suite of ecological drivers on the European wildcat's genetic integrity, while assessing the role played by protected areas in this process. We used genotype data from 1217 putative European wildcat samples from 13 European countries to assess the effects of landcover, disturbance and legal landscape protection on the European wildcat's genetic integrity across European biomes, through generalised linear models within a Bayesian framework. Overall, we found European wildcats to have genetic integrity levels above the wildcat-hybrid threshold (ca. 83%; threshold = 80%). However, Mediterranean and Temperate Insular biomes (i.e., Scotland) revealed lower levels, with 74% and 46% expected genetic integrity, respectively. We found that different drivers shape the level of genetic introgression across biomes, although forest integrity seems to be a common factor promoting European wildcat genetic integrity. Wildcat genetic integrity remains high, regardless of landscape legal protection, in biomes where populations appear to be healthy and show recent local range expansions. However, in biomes more susceptible to hybridisation, even protected areas show limited effectiveness in mitigating this threat. In the face of the detected patterns, we recommend that species conservation and management plans should be biome- and landscape-context-specific to ensure effective wildcat conservation, especially in the Mediterranean and Temperate Insular biomes.Thanks are due to FCT/MCTES for the financial support to cE3c (UIDB/00329/2020), through national funds, and the co-funding by the FEDER, within the PT2020 Partnership Agreement and Compete 2020. PM was supported by UID/BIA/50027/2021 with funding from FCT/MCTES through national funds. FDR was supported by a postdoctoral contract from the University of Málaga (I Plan Propio de Investigación y Transferencia, call 2020). This study was partly funded by research projects CGL2009-10741, funded by the Spanish Ministry of Science and Innovation and EU-FEDER, and OAPN 352/2011, funded by the Organismo Autónomo Parques Nacionales (Spain). Luxembourg sample collection has been co-funded by the Ministry of Environment, Climate and Sustainable Development of Luxembourg. We would like to thank the Bavarian Forest National Park Administration for the approval and support in collecting samples.Peer reviewe
Multi-decadal improvements in the ecological quality of European rivers are not consistently reflected in biodiversity metrics
Humans impact terrestrial, marine and freshwater ecosystems, yet many broad-scale studies have found no systematic, negative biodiversity changes (for example, decreasing abundance or taxon richness). Here we show that mixed biodiversity responses may arise because community metrics show variable responses to anthropogenic impacts across broad spatial scales. We first quantified temporal trends in anthropogenic impacts for 1,365 riverine invertebrate communities from 23 European countries, based on similarity to least-impacted reference communities. Reference comparisons provide necessary, but often missing, baselines for evaluating whether communities are negatively impacted or have improved (less or more similar, respectively). We then determined whether changing impacts were consistently reflected in metrics of community abundance, taxon richness, evenness and composition. Invertebrate communities improved, that is, became more similar to reference conditions, from 1992 until the 2010s, after which improvements plateaued. Improvements were generally reflected by higher taxon richness, providing evidence that certain community metrics can broadly indicate anthropogenic impacts. However, richness responses were highly variable among sites, and we found no consistent responses in community abundance, evenness or composition. These findings suggest that, without sufficient data and careful metric selection, many common community metrics cannot reliably reflect anthropogenic impacts, helping explain the prevalence of mixed biodiversity trends.We thank J. England for assistance with calculating ecological quality and the biomonitoring indices in the UK. Funding for authors, data collection and processing was provided by the European Union Horizon 2020 project eLTER PLUS (grant number 871128). F.A. was supported by the Swiss National Science Foundation (grant numbers 310030_197410 and 31003A_173074) and the University of Zurich Research Priority Program Global Change and Biodiversity. J.B. and M.A.-C. were funded by the European Commission, under the L‘Instrument Financier pour l’Environnement (LIFE) Nature and Biodiversity program, as part of the project LIFE-DIVAQUA (LIFE18 NAT/ES/000121) and also by the project ‘WATERLANDS’ (PID2019-107085RB-I00) funded by the Ministerio de Ciencia, Innovación y Universidades (MCIN) and Agencia Estatal de Investigación (AEI; MCIN/AEI/10.13039/501100011033/ and by the European Regional Development Fund (ERDF) ‘A way of making Europe’. N.J.B. and V.P. were supported by the Lithuanian Environmental Protection Agency (https://aaa.lrv.lt/) who collected the data and were funded by the Lithuanian Research Council (project number S-PD-22-72). J.H. was supported by the Academy of Finland (grant number 331957). S.C.J. acknowledges funding by the Leibniz Competition project Freshwater Megafauna Futures and the German Federal Ministry of Education and Research (Bundesministerium für Bildung und Forschung or BMBF; 033W034A). A.L. acknowledges funding by the Spanish Ministry of Science and Innovation (PID2020-115830GB-100). P.P., M.P. and M.S. were supported by the Czech Science Foundation (GA23-05268S and P505-20-17305S) and thank the Czech Hydrometeorological Institute and the state enterprises Povodí for the data used to calculate ecological quality metrics from the Czech surface water monitoring program. H.T. was supported by the Estonian Research Council (number PRG1266) and by the Estonian national program ‘Humanitarian and natural science collections’. M.J.F. acknowledges the support of Fundação para a Ciência e Tecnologia, Portugal, through the projects UIDB/04292/2020 and UIDP/04292/2020 granted to the Marine and Environmental Sciences Centre, LA/P/0069/2020 granted to the Associate Laboratory Aquatic Research Network (ARNET), and a Call Estímulo ao Emprego Científico (CEEC) contract.Peer reviewe
Time series of freshwater macroinvertebrate abundances and site characteristics of European streams and rivers
Freshwater macroinvertebrates are a diverse group and play key ecological roles, including accelerating nutrient cycling, filtering water, controlling primary producers, and providing food for predators. Their differences in tolerances and short generation times manifest in rapid community responses to change. Macroinvertebrate community composition is an indicator of water quality. In Europe, efforts to improve water quality following environmental legislation, primarily starting in the 1980s, may have driven a recovery of macroinvertebrate communities. Towards understanding temporal and spatial variation of these organisms, we compiled the TREAM dataset (Time seRies of European freshwAter Macroinvertebrates), consisting of macroinvertebrate community time series from 1,816 river and stream sites (mean length of 19.2 years and 14.9 sampling years) of 22 European countries sampled between 1968 and 2020. In total, the data include >93 million sampled individuals of 2,648 taxa from 959 genera and 212 families. These data can be used to test questions ranging from identifying drivers of the population dynamics of specific taxa to assessing the success of legislative and management restoration efforts.Nathalie Kaffenberger aided in initial data compilation. Funding for authors, data collection and processing was provided by the EU Horizon 2020 project eLTER PLUS (grant agreement no. 871128), German Federal Ministry of Education and Research (BMBF; 033W034A), German Research Foundation (DFG FZT 118, 202548816), the Collaborative Research Centre 1439 RESIST (DFG—SFB 1439/1 2021 –426547801), Czech Republic project no. GA23-05268S, the Leibniz Competition (J45/2018, P74/2018), the Spanish Ministerio de Economía, Industria y Competitividad - Agencia Estatal de Investigación and the European Regional Development Fund (MECODISPER project CTM 2017-89295-P), Ramón y Cajal contracts and the project funded by the Spanish Ministry of Science and Innovation (RYC2019-027446-I, RYC2020-029829-I, PID2020-115830GB-100), the Danish Environment Agency, the Norwegian Environment Agency, SOMINCOR – Lundin mining & FCT - Fundação para a Ciência e Tecnologia, Portugal, the Swedish University of Agricultural Sciences, the Swiss National Science Foundation (Grant PP00P3_179089), the EU LIFE programme (DIVAQUA project - LIFE18 NAT/ES/000121), and the UK Natural Environment Research Council (GLiTRS project -NE/V006886/1 and NE/R016429/1 as part of the UK-SCAPE programme), the Autonomous Province of Bolzano (Italy), Estonian Research Council (grant No PRG1266), Estonian national program ‘Humanitarian and natural science collections’. The Environment Agency of England, the Scottish Environmental Protection Agency and Natural Resources Wales provided publicly available data. The collection of data from the Rhône River in France was greatly aided by Marie-Claude Roger (INRAE Lyon), Jean-Claude Berger (INRAE AIX), and Pâquerette Dessaix (ARALEP). We are also grateful to the French Regional Environment Directorates (DREALs) for their collaboration in harmonising the long-term data series from the other French rivers. We thank the AWEL from the Canton of Zurich for providing access to macroinvertebrate data from the AWEL monitoring scheme. We acknowledge the Flanders Environment Agency, the Rhineland-Palatinate State Office for the Environment and the Bulgarian Executive Environment Agency for providing data. This manuscript is a contribution of the Alliance for Freshwater Life (www.allianceforfreshwaterlife.org). Any views expressed within this paper are those of the authors and do not necessarily represent the views of their respective employer organisations.Peer reviewe
The recovery of European freshwater biodiversity has come to a halt
Owing to a long history of anthropogenic pressures, freshwater ecosystems are among the most vulnerable to biodiversity loss1. Mitigation measures, including wastewater treatment and hydromorphological restoration, have aimed to improve environmental quality and foster the recovery of freshwater biodiversity2. Here, using 1,816 time series of freshwater invertebrate communities collected across 22 European countries between 1968 and 2020, we quantified temporal trends in taxonomic and functional diversity and their responses to environmental pressures and gradients. We observed overall increases in taxon richness (0.73% per year), functional richness (2.4% per year) and abundance (1.17% per year). However, these increases primarily occurred before the 2010s, and have since plateaued. Freshwater communities downstream of dams, urban areas and cropland were less likely to experience recovery. Communities at sites with faster rates of warming had fewer gains in taxon richness, functional richness and abundance. Although biodiversity gains in the 1990s and 2000s probably reflect the effectiveness of water-quality improvements and restoration projects, the decelerating trajectory in the 2010s suggests that the current measures offer diminishing returns. Given new and persistent pressures on freshwater ecosystems, including emerging pollutants, climate change and the spread of invasive species, we call for additional mitigation to revive the recovery of freshwater biodiversity.N. Kaffenberger helped with initial data compilation. Funding for authors and data collection and processing was provided by the EU Horizon 2020 project eLTER PLUS (grant agreement no. 871128); the German Federal Ministry of Education and Research (BMBF; 033W034A); the German Research Foundation (DFG FZT 118, 202548816); Czech Republic project no. P505-20-17305S; the Leibniz Competition (J45/2018, P74/2018); the Spanish Ministerio de Economía, Industria y Competitividad—Agencia Estatal de Investigación and the European Regional Development Fund (MECODISPER project CTM 2017-89295-P); Ramón y Cajal contracts and the project funded by the Spanish Ministry of Science and Innovation (RYC2019-027446-I, RYC2020-029829-I, PID2020-115830GB-100); the Danish Environment Agency; the Norwegian Environment Agency; SOMINCOR—Lundin mining & FCT—Fundação para a Ciência e Tecnologia, Portugal; the Swedish University of Agricultural Sciences; the Swiss National Science Foundation (grant PP00P3_179089); the EU LIFE programme (DIVAQUA project, LIFE18 NAT/ES/000121); the UK Natural Environment Research Council (GLiTRS project NE/V006886/1 and NE/R016429/1 as part of the UK-SCAPE programme); the Autonomous Province of Bolzano (Italy); and the Estonian Research Council (grant no. PRG1266), Estonian National Program ‘Humanitarian and natural science collections’. The Environment Agency of England, the Scottish Environmental Protection Agency and Natural Resources Wales provided publicly available data. We acknowledge the members of the Flanders Environment Agency for providing data. This article is a contribution of the Alliance for Freshwater Life (www.allianceforfreshwaterlife.org).Peer reviewe
Changes in caddisflies community composition and distribution along 60 years timespan monitoring in Luxembourg
In Luxembourg, caddisflies have been systematically collected since the early Sixties. Three periods of exhaustive sampling may be distinguished: the Sixties; 1994 to 2002; and a long period from 2007 to the present time in the frame of the Water Framework Directive. Bearing in mind the uneven sampling procedure across periods, we aim to document changes in community composition and distribution through time including the nature of these changes (e.g. gains and losses of species). We hypothesise different trends of species gains and losses for specialist species in comparison to generalist species. Therefore, we propose a method to identify specialist and generalist species in our dataset. Historical data (1961 to 1968) lack information on precise locations and abundance of specimen collected. Consequently, cell grids of original distribution maps are used to compare caddisfly community assemblages along the three monitoring periods. We assess the changes that occur on presence/absence data in specific groups of species (i.e. cold-adapted, warm-adapted specialists and generalist species). Temporal β-diversity results reveal that survey intervals for each monitoring period are dominated by species losses when the comparison is restricted to cold-adapted species. On the other hand, warm-adapted and generalist species are increasing from the Sixties period when compared to the two next periods (1994–2002 and 2007–2020). However, the comparison of the most recent periods reveals species losses even for the warm-adapted and generalist species. This complex picture of caddisflies species losses and gains in different ways through time, amongst river types and in response to different pressures, is discussed
Genetic integrity of European wildcats: Variation across biomes mandates geographically tailored conservation strategies
Hybridisation between domestic and wild taxa can pose severe threats to wildlife conservation, and human-induced hybridisation, often linked to species' introductions and habitat degradation, may promote reproductive opportunities between species for which natural interbreeding would be highly unlikely. Using a biome-specific approach, we examine the effects of a suite of ecological drivers on the European wildcat's genetic integrity, while assessing the role played by protected areas in this process. We used genotype data from 1217 putative European wildcat samples from 13 European countries to assess the effects of landcover, disturbance and legal landscape protection on the European wildcat's genetic integrity across European biomes, through generalised linear models within a Bayesian framework. Overall, we found European wildcats to have genetic integrity levels above the wildcat-hybrid threshold (ca. 83%; threshold = 80%). However, Mediterranean and Temperate Insular biomes (i.e., Scotland) revealed lower levels, with 74% and 46% expected genetic integrity, respectively. We found that different drivers shape the level of genetic introgression across biomes, although forest integrity seems to be a common factor promoting European wildcat genetic integrity. Wildcat genetic integrity remains high, regardless of landscape legal protection, in biomes where populations appear to be healthy and show recent local range expansions. However, in biomes more susceptible to hybridisation, even protected areas show limited effectiveness in mitigating this threat. In the face of the detected patterns, we recommend that species conservation and management plans should be biome- and landscape-context-specific to ensure effective wildcat conservation, especially in the Mediterranean and Temperate Insular biomes.info:eu-repo/semantics/publishedVersio
The recovery of European freshwater biodiversity has come to a halt
Owing to a long history of anthropogenic pressures, freshwater ecosystems are among the most vulnerable to biodiversity loss(1). Mitigation measures, including wastewater treatment and hydromorphological restoration, have aimed to improve environmental quality and foster the recovery of freshwater biodiversity(2). Here, using 1,816 time series of freshwater invertebrate communities collected across 22 European countries between 1968 and 2020, we quantified temporal trends in taxonomic and functional diversity and their responses to environmental pressures and gradients. We observed overall increases in taxon richness (0.73% per year), functional richness (2.4% per year) and abundance (1.17% per year). However, these increases primarily occurred before the 2010s, and have since plateaued. Freshwater communities downstream of dams, urban areas and cropland were less likely to experience recovery. Communities at sites with faster rates of warming had fewer gains in taxon richness, functional richness and abundance. Although biodiversity gains in the 1990s and 2000s probably reflect the effectiveness of water-quality improvements and restoration projects, the decelerating trajectory in the 2010s suggests that the current measures offer diminishing returns. Given new and persistent pressures on freshwater ecosystems, including emerging pollutants, climate change and the spread of invasive species, we call for additional mitigation to revive the recovery of freshwater biodiversity
Invasion impacts and dynamics of a European-wide introduced species
Globalization has led to the introduction of thousands of alien species worldwide. With growing impacts by invasive species, understanding the invasion process remains critical for predicting adverse effects and informing efficient management. Theoretically, invasion dynamics have been assumed to follow an “invasion curve” (S-shaped curve of available area invaded over time), but this dynamic has lacked empirical testing using large-scale data and neglects to consider invader abundances. We propose an “impact curve” describing the impacts generated by invasive species over time based on cumulative abundances. To test this curve's large-scale applicability, we used the data-rich New Zealand mud snail Potamopyrgus antipodarum, one of the most damaging freshwater invaders that has invaded almost all of Europe. Using long-term (1979–2020) abundance and environmental data collected across 306 European sites, we observed that P. antipodarum abundance generally increased through time, with slower population growth at higher latitudes and with lower runoff depth. Fifty-nine percent of these populations followed the impact curve, characterized by first occurrence, exponential growth, then long-term saturation. This behaviour is consistent with boom-bust dynamics, as saturation occurs due to a rapid decline in abundance over time. Across sites, we estimated that impact peaked approximately two decades after first detection, but the rate of progression along the invasion process was influenced by local abiotic conditions. The S-shaped impact curve may be common among many invasive species that undergo complex invasion dynamics. This provides a potentially unifying approach to advance understanding of large-scale invasion dynamics and could inform timely management actions to mitigate impacts on ecosystems and economies
Invasion impacts and dynamics of a European‐wide introduced species
Globalization has led to the introduction of thousands of alien species worldwide. With growing impacts by invasive species, understanding the invasion process remains critical for predicting adverse effects and informing efficient management. Theoretically, invasion dynamics have been assumed to follow an “invasion curve” (S-shaped curve of available area invaded over time), but this dynamic has lacked empirical testing using large-scale data and neglects to consider invader abundances. We propose an “impact curve” describing the impacts generated by invasive species over time based on cumulative abundances. To test this curve's large-scale applicability, we used the data-rich New Zealand mud snail Potamopyrgus antipodarum, one of the most damaging freshwater invaders that has invaded almost all of Europe. Using long-term (1979–2020) abundance and environmental data collected across 306 European sites, we observed that P. antipodarum abundance generally increased through time, with slower population growth at higher latitudes and with lower runoff depth. Fifty-nine percent of these populations followed the impact curve, characterized by first occurrence, exponential growth, then long-term saturation. This behaviour is consistent with boom-bust dynamics, as saturation occurs due to a rapid decline in abundance over time. Across sites, we estimated that impact peaked approximately two decades after first detection, but the rate of progression along the invasion process was influenced by local abiotic conditions. The S-shaped impact curve may be common among many invasive species that undergo complex invasion dynamics. This provides a potentially unifying approach to advance understanding of large-scale invasion dynamics and could inform timely management actions to mitigate impacts on ecosystems and economies