6,274 research outputs found
On extensions of representations for compact Lie groups
Let be a closed normal subgroup of a compact Lie group such that
is connected. This paper provides a necessary and sufficient condition
for every complex representation of to be extendible to , and also for
every complex -vector bundle over the homogeneous space to be trivial.
In particular, we show that the condition holds when the fundamental group of
is torsion free.Comment: 10 pages, AMS-LaTeX v1.
Quark number Susceptibility and Phase Transition in hQCD Models
We study the quark number susceptibility, an indicator of QCD phase
transition, in the hard wall and soft wall models of hQCD. We find that the
susceptibilities in both models are the same, jumping up at the deconfinement
phase transition temperature. We also find that the diffusion constant in the
soft wall model is enhanced compared to the one in the hard wall model.Comment: 14 pages, 2 figure
Structure-Aware Dynamic Scheduler for Parallel Machine Learning
Training large machine learning (ML) models with many variables or parameters
can take a long time if one employs sequential procedures even with stochastic
updates. A natural solution is to turn to distributed computing on a cluster;
however, naive, unstructured parallelization of ML algorithms does not usually
lead to a proportional speedup and can even result in divergence, because
dependencies between model elements can attenuate the computational gains from
parallelization and compromise correctness of inference. Recent efforts toward
this issue have benefited from exploiting the static, a priori block structures
residing in ML algorithms. In this paper, we take this path further by
exploring the dynamic block structures and workloads therein present during ML
program execution, which offers new opportunities for improving convergence,
correctness, and load balancing in distributed ML. We propose and showcase a
general-purpose scheduler, STRADS, for coordinating distributed updates in ML
algorithms, which harnesses the aforementioned opportunities in a systematic
way. We provide theoretical guarantees for our scheduler, and demonstrate its
efficacy versus static block structures on Lasso and Matrix Factorization
CSGM Designer: a platform for designing cross-species intron-spanning genic markers linked with genome information of legumes.
BackgroundGenetic markers are tools that can facilitate molecular breeding, even in species lacking genomic resources. An important class of genetic markers is those based on orthologous genes, because they can guide hypotheses about conserved gene function, a situation that is well documented for a number of agronomic traits. For under-studied species a key bottleneck in gene-based marker development is the need to develop molecular tools (e.g., oligonucleotide primers) that reliably access genes with orthology to the genomes of well-characterized reference species.ResultsHere we report an efficient platform for the design of cross-species gene-derived markers in legumes. The automated platform, named CSGM Designer (URL: http://tgil.donga.ac.kr/CSGMdesigner), facilitates rapid and systematic design of cross-species genic markers. The underlying database is composed of genome data from five legume species whose genomes are substantially characterized. Use of CSGM is enhanced by graphical displays of query results, which we describe as "circular viewer" and "search-within-results" functions. CSGM provides a virtual PCR representation (eHT-PCR) that predicts the specificity of each primer pair simultaneously in multiple genomes. CSGM Designer output was experimentally validated for the amplification of orthologous genes using 16 genotypes representing 12 crop and model legume species, distributed among the galegoid and phaseoloid clades. Successful cross-species amplification was obtained for 85.3% of PCR primer combinations.ConclusionCSGM Designer spans the divide between well-characterized crop and model legume species and their less well-characterized relatives. The outcome is PCR primers that target highly conserved genes for polymorphism discovery, enabling functional inferences and ultimately facilitating trait-associated molecular breeding
Particulate counter electrode system for enhanced light harvesting in dye-sensitized solar cells
A particulate counter electrode with photo scattering and redox catalytic properties is applied to dye sensitized solar cells (DSSCs) in order to improve photo conversion efficiency and simplify the assembly process. Our particulate counter electrode acts as both a photo reflecting layer and a catalyst for reduction of electrolyte. The reflective and catalytic properties of the electrode are investigated through optical and electrochemical analysis, respectively. A short circuit current density enhancement is observed in the DSSCs without the need to add an additional reflecting layer to the electrode. This leads to a simplified assembly process. (C) 2013 Optical Society of Americ
- …