16 research outputs found
Derived bracket construction and Manin products
We will extend the classical derived bracket construction to any algebra over
a binary quadratic operad. We will show that the derived product construction
is a functor given by the Manin white product with the operad of permutation
algebras. As an application, we will show that the operad of prePoisson
algebras is isomorphic to Manin black product of the Poisson operad with the
preLie operad. We will show that differential operators and Rota-Baxter
operators are, in a sense, Koszul dual to each other.Comment: This is the final versio
Quantum Analogy of Poisson Geometry, Related Dendriform Algebras and Rota-Baxter Operators
We will introduce an associative (or quantum) version of Poisson structure
tensors. This object is defined as an operator satisfying a "generalized"
Rota-Baxter identity of weight zero. Such operators are called generalized
Rota-Baxter operators. We will show that generalized Rota-Baxter operators are
characterized by a cocycle condition so that Poisson structures are so. By
analogy with twisted Poisson structures, we propose a new operator "twisted
Rota-Baxter operators" which is a natural generalization of generalized
Rota-Baxter operators. It is known that classical Rota-Baxter operators are
closely related with dendriform algebras. We will show that twisted Rota-Baxter
operators induce NS-algebras which is a twisted version of dendriform algebra.
The twisted Poisson condition is considered as a Maurer-Cartan equation up to
homotopy. We will show the twisted Rota-Baxter condition also is so. And we
will study a Poisson-geometric reason, how the twisted Rota-Baxter condition
arises.Comment: 18 pages. Final versio
QP-Structures of Degree 3 and 4D Topological Field Theory
A A BV algebra and a QP-structure of degree 3 is formulated. A QP-structure
of degree 3 gives rise to Lie algebroids up to homotopy and its algebraic and
geometric structure is analyzed. A new algebroid is constructed, which derives
a new topological field theory in 4 dimensions by the AKSZ construction.Comment: 17 pages, Some errors and typos have been correcte