16 research outputs found

    Case Reports of Adipose-derived Stem Cell Therapy for Nasal Skin Necrosis after Filler Injection

    Get PDF
    With the gradual increase of cases using fillers, cases of patients treated by non-medical professionals or inexperienced physicians resulting in complications are also increasing. We herein report 2 patients who experienced acute complications after receiving filler injections and were successfully treated with adipose-derived stem cell (ADSCs) therapy. Case 1 was a 23-year-old female patient who received a filler (Restylane) injection in her forehead, glabella, and nose by a non-medical professional. The day after her injection, inflammation was observed with a 3×3 cm skin necrosis. Case 2 was a 30-year-old woman who received a filler injection of hyaluronic acid gel (Juvederm) on her nasal dorsum and tip at a private clinic. She developed erythema and swelling in the filler-injected area A solution containing ADSCs harvested from each patient's abdominal subcutaneous tissue was injected into the lesion at the subcutaneous and dermis levels. The wounds healed without additional treatment. With continuous follow-up, both patients experienced only fine linear scars 6 months postoperatively. By using adipose-derived stem cells, we successfully treated the acute complications of skin necrosis after the filler injection, resulting in much less scarring, and more satisfactory results were achieved not only in wound healing, but also in esthetics

    Nasal Anthropometry on Facial Computed Tomography Scans for Rhinoplasty in Koreans

    No full text
    BackgroundCephalometric analysis is essential for planning treatment in maxillofacial and aesthetic facial surgery. Although photometric analysis of the Korean nose has been attempted in the past, anthropometry of the deeper nasal structures in the same population based on computerized tomography (CT) has not been published. We therefore measured three anthropometric parameters of the nose on CT scans in our clinical series of patients.MethodsWe conducted the current retrospective study of a total of 100 patients (n=100) who underwent a CT-guided radiological measurement at our institution during a period ranging from January of 2008 to August of 2010. In these patients, we took three anthropometric measurements: the nasofrontal angle, the pyramidal angle, and the linear distance between the nasion and the tip of the nasal bone.ResultsThe mean nasofrontal angle was 131.14° in the male patients and 140.70° in the female patients. The mean linear distance between the nasion and the tip of the nasal bone was 21.28 mm and 18.02 mm, respectively. The mean nasal pyramidal angle was 112.89° and 103.25° at the level of the nasal root, 117.49° and 115.60° at the middle level of the nasal bone, and 127.99° and 125.04° at the level of the tip of the nasal bone, respectively.ConclusionsIn conclusion, our data will be helpful in the preparation of silicone implants for augmentation and/or corrective rhinoplasty in ethnic Korean people

    Evaluation of steady-state characteristics for solid oxide carbon fuel cell short-stacks

    No full text
    Solid oxide based carbon fuel cells (SO-CFCs) offer clean and efficient utilization of carbon based fuels for energy conversion. In this work, we have realized and operated 100 and 200 W-class solid oxide carbon fuel cell (SO-CFC) short stacks to investigate the fuel supply, electrochemical performance, continuous operation, long-term stability, and scale-up characteristics for SO-CFC based power generation systems. Different configurations for 100 and 200 W class short stacks were employed for integrated Boudouard gasification and carbon fuel supply at the stack level. For the 100 W class SO-CFC short stack, maximum stack power of 80.4, 93.5, and 111.5 W was achieved at 700, 750, and 800 °C, respectively, while the 200 W class SO-CFC short stack produced maximum power of 224.4 W at 750 °C when operated on carbon fuel. Both SO-CFC short stacks were operated continuously at galvanostatic conditions to study the fuel supply conditions and long-term degradation behavior of the tubular cells in the short stacks. A postmortem analysis of the SO-CFC anode was also performed by SEM and XRD to elucidate the reasons for stack performance degradation during relatively longer operation with carbon fuels. Through a detailed analysis of the dry gasification in the integrated gasifier, the electrochemical performance of the SO-CFC stacks, and the post operation diagnosis of the cells, this study provides details on the important challenges in scaling-up SO-CFC technology from a single-cell to a several hundred watt power generation system

    Production of High-Purity Tantalum Metal Powder for Capacitors Using Self-Propagating High-Temperature Synthesis

    No full text
    In this study, high-purity tantalum metal powder was manufactured via self-propagating high-temperature synthesis. During the process, Ta2O5 and Mg were used as the raw material powder and the reducing agent, respectively, and given that combustion rate and reaction temperature are important factors that influence the success of this process, these factors were controlled by adding an excessive mass of the reducing agent (Mg) i.e., above the chemical equivalent, rather than by using a separate diluent. It was confirmed that Ta metal powder manufactured after the process was ultimately manufactured 99.98% high purity Ta metal powder with 0.5 μm particle size. Thus, it was observed that adding the reducing reagent in excess favored the manufacture of high-purity Ta powder that can be applied in capacitors

    Effects of ZrO2 and Al2O3 Addition on the Physical Properties of Cu-Mo-Cr Alloy by Liquid Phase Sintering

    No full text
    In this study, the effect of the addition of ZrO2 and Al2O3 ceramic powders to Cu-Mo-Cr alloy was studied by examining the physical properties of the composite material. The ceramic additives were selected based on the thermodynamic stability calculation of the Cu-Mo-Cr alloys. Elemental powders, in the ratio Cu:Mo:Cr = 60:30:10 (wt.%), and approximately 0-1.2 wt.% of ZrO2 and Al2O3 were mixed, and a green compact was formed by pressing the mixture under 186 MPa pressure and sintering at 1250°C for 5 h. The raw powders were evenly dispersed in the mixed powder, as observed by scanning electron microscopy. After sintering, the microstructures, densities, electrical conductivities, and hardness of the composites were evaluated. We found that the addition of ZrO2 and Al2O3 increased the hardness and decreased the electrical conductivity and density of the composites
    corecore