24 research outputs found

    Formation of Advanced Nanomaterials by Gas-Phase Aggregation

    Get PDF
    Gas aggregation is a well-known phenomenon, often seen in nature under temperature lowering, as, for example, cloud, fog or haze formation [...

    Gas-Phase Synthesis of Functional Nanomaterials

    Get PDF

    Ag Nanorod Arrays for SERS: Aspects of Spectral Reproducibility, Surface Contamination, and Spectral Sensitivity

    Get PDF
    Ag nanorod arrays prepared by oblique angle vapor deposition (OAD) represent regular, large area substrates for surface-enhanced Raman scattering (SERS) spectroscopy. We studied uniformity and spectral reproducibility of silver OAD-fabricated substrates (AgOADs) by spectral mapping of methylene blue. The results demonstrate good reproducibility apart from occasional “hot-spot” sites where the intensity is higher. The number of “hot-spots” represents 2%–6% of SERS-active sites of mapping substrate area. We were able to obtain good SERS spectra of testing amino acid tryptophan at 1 × 10−5 M concentration and three different free-base porphyrins down to ∼10−7 M concentration. We found out that keeping the AgOADs in a vacuum chamber overnight prevents the surface from binding any contaminants from the ambient atmosphere, without significant reduction in the SERS enhancement. Such substrates provide stable SERS enhancement even when stored for 1 year after preparation

    Structure of plasma (re)polymerized polylactic acid films fabricated by plasma-assisted vapour thermal deposition

    Get PDF
    Plasma polymer films typically consist of very short fragments of the precursor molecules. That rather limits the applicability of most plasma polymerisation/plasma-enhanced chemical vapour deposition (PECVD) processes in cases where retention of longer molecular structures is desirable. Plasma-assisted vapour thermal deposition (PAVTD) circumvents this limitation by using a classical bulk polymer as a high molecular weight “precursor”. As a model polymer in this study, polylactic acid (PLA) has been used. The resulting PLA-like films were characterised mostly by X-ray photoelectron spectroscopy (XPS) and nuclear magnetic resonance (NMR) spectroscopy. The molecular structure of the films was found to be tunable in a broad range: from the structures very similar to bulk PLA polymer to structures that are more typical for films prepared using PECVD. In all cases, PLA-like groups are at least partially preserved. A simplified model of the PAVTD process chemistry was proposed and found to describe well the observed composition of the films. The structure of the PLA-like films demonstrates the ability of plasma-assisted vapour thermal deposition to bridge the typical gap between the classical and plasma polymers. © 2021 by the authors. Licensee MDPI, Basel, Switzerland.Czech Science FoundationGrant Agency of the Czech Republic [GA17-10813S]; Charles University [SVV 260 579-2020]Univerzita Karlova v Praze, UK; Grantová Agentura České Republiky, GA ČR: GA17-10813

    Nanostructured films of plasma polymerized hexamethyldisilazane and lactic acid deposited by atmospheric plasma JET

    Get PDF
    In this work, composite layers of hexamethyldisilazane (HMDSN) and lactic acid (LA) were prepared using chemical vapor deposition process by a nitrogen atmospheric pressure plasma jet source. The HMDSN vapours were introduced into the plasma jet. Varying LA admixture was added into the jet in the form of aerosol. The chemical composition, morphology and wettability of resulting films were studied. Infrared spectra and XPS analysis show both Si-O like and hydrocarbon structures. With increasing amount of LA admixture, the oxidation of the layers increases. The morphology of the films was measured with SEM. The films prepared with no LA have a foam-like structure. With increasing amount of LA the structure changes into more fractal-like. The X-ray diffraction analysis suggests the presence of amorphous SiO2 domains in the films. The films exhibited superhydrophobic properties that can be modified by the post-treatment of the samples in DBD discharge. © NANOCON 2019.All right reserved.Czech Science FoundationGrant Agency of the Czech Republic [17-10813S

    Nanostructured Semi-Transparent TiO<sub>2</sub> Nanoparticle Coatings Produced by Magnetron-Based Gas Aggregation Source

    No full text
    A novel strategy to produce semi-transparent TiO2 nanoparticle-based coatings is investigated. This two-step strategy utilizes a magnetron-based gas aggregation source of Ti nanoparticles that are subsequently annealed in air at the temperature of 450 °C. It is shown that by using this technique, it is possible to fabricate highly porous and patterned TiO2 nanoparticle coatings with an optical band gap of around 3.0 eV on the substrate materials commonly used as transparent electrodes in photovoltaic applications or for water-splitting. In addition, it is shown that the morphology of the resulting coatings may be varied by changing the angle between the direction of the substrate and the incoming beam of nanoparticles. As demonstrated, the tilting of the substrate leads to the formation of columnar nanoparticle films

    State-of-the-Art, and Perspectives of, Silver/Plasma Polymer Antibacterial Nanocomposites

    No full text
    Urgent need for innovative and effective antibacterial coatings in different fields seems to have triggered the development of numerous strategies for the production of such materials. As shown in this short overview, plasma based techniques arouse considerable attention that is connected with the possibility to use these techniques for the production of advanced antibacterial Ag/plasma polymer coatings with tailor-made functional properties. In addition, the plasma-based deposition is believed to be well-suited for the production of novel multi-functional or stimuli-responsive antibacterial films

    Nanostructured Plasma Polymerized Fluorocarbon Films for Drop Coating Deposition Raman Spectroscopy (DCDRS) of Liposomes

    No full text
    Raman spectroscopy is one of the most used biodetection techniques. However, its usability is hampered in the case of low concentrated substances because of the weak intensity of the Raman signal. To overcome this limitation, the use of drop coating deposition Raman spectroscopy (DCDRS), in which the liquid samples are allowed to dry into well-defined patterns where the non-volatile solutes are highly concentrated, is appropriate. This significantly improves the Raman sensitivity when compared to the conventional Raman signal from solution/suspension. As DCDRS performance strongly depends on the wetting properties of substrates, we demonstrate here that the smooth hydrophobic plasma polymerized fluorocarbon films prepared by magnetron sputtering (contact angle 108°) are well-suited for the DCDRS detection of liposomes. Furthermore, it was proved that even better improvement of the Raman signal might be achieved if the plasma polymer surfaces are roughened. In this case, 100% higher intensities of Raman signal are observed in comparison with smooth fluorocarbon films. As it is shown, this effect, which has no influence on the profile of Raman spectra, is connected with the increased hydrophobicity of nanostructured fluorocarbon films. This results in the formation of dried liposomal deposits with smaller diameters and higher preconcentration of liposomes

    Double Plasmon Resonance Nanostructured Silver Coatings with Tunable Properties

    No full text
    Plasmonic materials that exhibit dual or multiple localised surface plasmon resonances (LSPRs) due to their high application potential in biosensing and biodetection are gaining increasing attention. Here, we report on the novel strategy suitable for the production of silver nanostructured dual-LSPR coatings. This fully vacuum-based technique uses a magnetron sputtering of Ag and a gas aggregation source of silver nanoparticles. It is shown that when combined, produced Ag nano-islands and nanoparticles exhibit due to their different sizes and shapes two independent LSPRs in the visible part of spectra. Furthermore, the intensities and positions of individual LSPR may be precisely controlled by the amount of sputter-deposited nano-islands and a number of Ag nanoparticles, which opens new possibilities for the tailor-made production of novel platforms for surface-enhanced spectroscopic biodetection
    corecore