12 research outputs found

    UK Space Agency ``Mars Utah Rover Field Investigation 2016'' (MURFI 2016): Overview of Mission, Aims, and Progress

    Get PDF
    The Mars Utah Rover Field Investigation “MURFI 2016” is a Mars Rover field analogue mission run by the UK Space Agency (UKSA) in collaboration with the Canadian Space Agency (CSA). MURFI 2016 took place between 22nd October and 13th November 2016 and consisted of a field team including an instrumented Rover platform, at the field site near Hanksville (Utah, USA), and an ‘Operations Team’ based in the Mission Control Centre (MOC) at the Harwell Campus near Oxford in the UK.The field site was chosen based on the collaboration with the CSA and its Mars-like local geology. It was used by the CSA in 2015 for Mars Rover trials, and in 2016, several teams used the site, each with their own designated working areas. The two main aims of MURFI 2016 were (i) to develop logistical and leadership experience in running field trials within the UKSA, and (ii) to provide members of the Mars Science community with Rover Operations experience, and hence to build expertise that could be used in the 2020 ExoMars Rover mission, or other future Rover missions. Because MURFI 2016 was the first solely UKSA-led Rover analogue trial, the most important objective was to learn how to best implement Rover trials in general. This included aspects of planning, logistics, field safety, MOC setup and support, communications, person management and science team development. Some aspects were based on past experience from previous trials but the focus was on ‘learning through experience’ - especially in terms of the Operations Team, who each took on a variety of roles during the mission

    Optical absorption by dilute GaNSb alloys:Influence of N pair states

    Get PDF
    The optical properties of GaNSb alloys with N contents of up to 2.5% have been investigated at room temperature using infrared absorption spectroscopy. The evolution of the absorption onsets with N content has been described using a three level band anticrossing model of the N localized states interactions with the GaSb conduction band. This approach includes the effect of N pair states, which is critical to reproduce the observed optical properties. This confirms theoretical predictions that N pair states have a more pronounced effect on the band dispersion in GaNSb than in GaNAs.Publisher PDFPeer reviewe

    Continuous Growth of Hexagonal Graphene and Boron Nitride In-Plane Heterostructures by Atmospheric Pressure Chemical Vapor Deposition

    No full text
    Graphene–boron nitride monolayer heterostructures contain adjacent electrically active and insulating regions in a continuous, single-atom thick layer. To date structures were grown at low pressure, resulting in irregular shapes and edge direction, so studies of the graphene–boron nitride interface were restricted to the microscopy of nanodomains. Here we report templated growth of single crystalline hexagonal boron nitride directly from the oriented edge of hexagonal graphene flakes by atmospheric pressure chemical vapor deposition, and physical property measurements that inform the design of in-plane hybrid electronics. Ribbons of boron nitride monolayer were grown from the edge of a graphene template and inherited its crystallographic orientation. The relative sharpness of the interface was tuned through control of growth conditions. Frequent tearing at the graphene–boron nitride interface was observed, so density functional theory was used to determine that the nitrogen-terminated interface was prone to instability during cool down. The electronic functionality of monolayer heterostructures was demonstrated through fabrication of field effect transistors with boron nitride as an in-plane gate dielectric
    corecore