23,745 research outputs found
Systematic Investigation of Possibilities for New Physics Effects in b --> s Penguin Processes
Although recent experimental results in b-->s penguin process seem to be
roughly consistent with the standard model predictions, there may be still
large possibilities of new physics hiding in this processes. Therefore, here we
investigate systematically the potential new physics effects that may appear in
time-dependent CP asymmetries of B --> phi K^0, B--> eta^\prime K^0 and B-->
K^0 \pi^0 decay modes, by classifying the cases for the values of the
mixing-induced indirect CP asymmetries, S_{phi K^0}, S_{eta^\prime K^0}, S_{K^0
pi^0} which are compared to S_{J/psi K^0}. We also show that several B_s decay
modes may help to resolve the ambiguities in such an analysis. Through
combining analysis with the time-dependent CP asymmetries of B_s decay modes
such as B_s --> phi eta^\prime, B_s--> eta^\prime pi^0 and B_s --> K^0
bar{K}^0, we can determine where the new CP phases precisely come from.Comment: 17 pages, version to be published in Prog.Theor.Phy
Electron-boson spectral density of LiFeAs obtained from optical data
We analyze existing optical data in the superconducting state of LiFeAs at 4 K, to recover its electron-boson spectral density. A maximum entropy
technique is employed to extract the spectral density from
the optical scattering rate. Care is taken to properly account for elastic
impurity scattering which can importantly affect the optics in an -wave
superconductor, but does not eliminate the boson structure. We find a robust
peak in centered about 8.0 meV or 5.3 (with 17.6 K). Its position in energy agrees well with a similar
structure seen in scanning tunneling spectroscopy (STS). There is also a peak
in the inelastic neutron scattering (INS) data at this same energy. This peak
is found to persist in the normal state at 23 K. There is evidence that
the superconducting gap is anisotropic as was also found in low temperature
angular resolved photoemission (ARPES) data.Comment: 17 pages, 6 figure
Thermal activation energy of 3D vortex matter in NaFe1-xCoxAs (x=0.01, 0.03 and 0.07) single crystals
We report on the thermally activated flux flow dependency on the doping
dependent mixed state in NaFe1-xCoxAs (x=0.01, 0.03, and 0.07) crystals using
the magnetoresistivity in the case of B//c-axis and B//ab-plane. It was found
clearly that irrespective of the doping ratio, magnetoresistivity showed a
distinct tail just above the Tc, offset associated with the thermally activated
flux flow (TAFF) in our crystals. Furthermore, in TAFF region the temperature
dependence of the activation energy follows the relation U(T, B)=U_0 (B)
(1-T/T_c )^q with q=1.5 in all studied crystals. The magnetic field dependence
of the activation energy follows a power law of U_0 (B)~B^(-{\alpha}) where the
exponent {\alpha} is changed from a low value to a high value at a crossover
field of B=~2T, indicating the transition from collective to plastic pinning in
the crystals. Finally, it is suggested that the 3D vortex phase is the dominant
phase in the low-temperature region as compared to the TAFF region in our
series samples
- …