210 research outputs found

    A Mutation in Amino Acid Permease AAP6 Reduces the Amino Acid Content of the Arabidopsis Sieve Elements but Leaves Aphid Herbivores Unaffected.

    Get PDF
    The aim of this study was to investigate the role of the amino acid permease gene AAP6 in regulating phloem amino acid composition and then to determine the effects of this altered diet on aphid performance. A genotype of Arabidopsis thaliana (L.) was produced in which the function of the amino acid permease gene AAP6 (At5g49630) was abolished. Plants homozygous for the insertionally inactivated AAP6 gene had a significantly larger mean rosette width than the wild type and a greater number of cauline leaves. Seeds from the aap6 mutant were also significantly larger than those from the wild-type plants. Sieve element (SE) sap was collected by aphid stylectomy and the amino acids derivatized, separated, and quantified using Capillary Electrophoresis with Laser Induced Fluorescence (CE-LIF). In spite of the large variation across samples, the total amino acid concentration of SE sap of the aap6 mutant plants was significantly lower than that of the wild-type plants. The concentrations of lysine, phenylalanine, leucine, and aspartic acid were all significantly lower in concentration in the aap6 mutant plants compared with wild-type plants. This is the first direct demonstration of a physiological role for an amino acid transporter in regulating SE composition in vivo. The amino acid availability in sieve element sap is thought to be the major limiting factor for aphid growth and reproduction. Despite the changes in their diet, the aphid Myzus persicae(Sulzer) displayed only small changes in feeding behaviour on mutant plants when measured using the Electronic Penetration Graph (EPG) technique. Salivation by the aphid into the SE (E1 phase) was increased on mutant plants but there was no significant effect on other feeding EPG behaviours, or in the rate of honeydew production. Consistent with the small effect on aphid feeding behaviour, there was only a small effect of reduced sieve element amino acid concentration on aphid reproduction. The data are discussed in relation to the regulation of phloem composition and the role of phloem amino acids in regulating aphid performance

    Editing the genome of hiPSC with CRISPR/Cas9: disease models

    Get PDF

    Expression of a yeast-derived invertase in companion cells results in long-distance transport of a trisaccharide in an apoplastic loader and influences sucrose transport

    No full text
    Companion cell-specific expression of a cytosolic invertase from yeast (Saccharomyces cerevisiae) was used as a tool to synthesise oligosaccharides in the sieve element/companion cell complex and study whether oligosaccharides could be transported in the phloem of an apoplastically loading species. Potato (Solanum tuberosum L.) plants expressing the invertase under the control of the Agrobacterium tumefaciens rolC promoter produced the trisaccharide 6-kestose in leaves, which was transported via the phloem and accumulated in tubers of transgenic plants. In graft experiments with rolC invertase plants as scion and wild-type rootstocks, 6-kestose accumulated in tubers to levels comparable to sucrose. This shows that long-distance transport of oligosaccharides is possible in apoplastically loading plants, which normally transport only sucrose. The additional transport route for assimilates neither led to elevated photosynthetic activity nor to increased tuber yield. Enhanced sucrose turnover in companion cells caused large amounts of glucose and fructose to be exuded from leaf petioles, and elevated levels of sucrose were detected in phloem exudates. While the latter indicates a higher capacity for sucrose loading into the phloem due to increased metabolic activity of companion cells, the massive release of hexoses catalysed by the invertase seemed to interfere with assimilate delivery to sink organs

    Identification of cis-diols as intermediates in the oxidation of aromatic acids by a strain of Pseudomonas putida that contains a TOL plasmid.

    No full text
    Pseudomonas putida BG1 was isolated from soil by enrichment with p-toluate and selection for growth with p-xylene. Other hydrocarbons that served as growth substrates were toluene, m-xylene, 3-ethyltoluene, and 1,2,4-trimethylbenzene. The enzymes responsible for growth on these substrates are encoded by a large plasmid with properties similar to those of TOL plasmids isolated from other strains of Pseudomonas. Treatment of P. putida BG1 with nitrosoguanidine led to the isolation of a mutant strain which, when grown with fructose, oxidized both p-xylene and p-toluate to (-)-cis-1,2-dihydroxy-4-methylcyclohexa-3,5-diene-1-carboxylic acid (cis-p-toluate diol). The structure of the diol was determined by conventional chemical techniques including identification of the products formed by acid-catalyzed dehydration and characterization of a methyl ester derivative. The cis-relative stereochemistry of the hydroxyl groups was determined by the isolation and characterization of an isopropylidene derivative. p-Xylene-grown cells contained an inducible NAD+-dependent dehydrogenase which formed catechols from cis-p-toluate diol and the analogous acid diols formed from the other hydrocarbon substrates listed above. The catechols were converted to meta ring fission products by an inducible catechol-2,3-dioxygenase which was partially purified from p-xylene-grown cells of P. putida BG1
    corecore