7,615 research outputs found
Monte Carlo Simulation of Sinusoidally Modulated Superlattice Growth
The fabrication of ZnSe/ZnTe superlattices grown by the process of rotating
the substrate in the presence of an inhomogeneous flux distribution instead of
successively closing and opening of source shutters is studied via Monte Carlo
simulations. It is found that the concentration of each compound is
sinusoidally modulated along the growth direction, caused by the uneven arrival
of Se and Te atoms at a given point of the sample, and by the variation of the
Te/Se ratio at that point due to the rotation of the substrate. In this way we
obtain a ZnSeTe alloy in which the composition varies
sinusoidally along the growth direction. The period of the modulation is
directly controlled by the rate of the substrate rotation. The amplitude of the
compositional modulation is monotonous for small angular velocities of the
substrate rotation, but is itself modulated for large angular velocities. The
average amplitude of the modulation pattern decreases as the angular velocity
of substrate rotation increases and the measurement position approaches the
center of rotation. The simulation results are in good agreement with
previously published experimental measurements on superlattices fabricated in
this manner
Recommended from our members
A RISC-V Vector Processor With Simultaneous-Switching Switched-Capacitor DC-DC Converters in 28 nm FDSOI
This work demonstrates a RISC-V vector microprocessor implemented in 28 nm FDSOI with fully integrated simultaneous-switching switched-capacitor DC-DC (SC DC-DC) converters and adaptive clocking that generates four on-chip voltages between 0.45 and 1 V using only 1.0 V core and 1.8 V IO voltage inputs. The converters achieve high efficiency at the system level by switching simultaneously to avoid charge-sharing losses and by using an adaptive clock to maximize performance for the resulting voltage ripple. Details about the implementation of the DC-DC switches, DC-DC controller, and adaptive clock are provided, and the sources of conversion loss are analyzed based on measured results. This system pushes the capabilities of dynamic voltage scaling by enabling fast transitions (20 ns), simple packaging (no off-chip passives), low area overhead (16%), high conversion efficiency (80%-86%), and high energy efficiency (26.2 DP GFLOPS/W) for mobile devices
Thermodynamic theory of epitaxial ferroelectric thin films with dense domain structures
A Landau-Ginsburg-Devonshire-type nonlinear phenomenological theory is
presented, which enables the thermodynamic description of dense laminar
polydomain states in epitaxial ferroelectric thin films. The theory explicitly
takes into account the mechanical substrate effect on the polarizations and
lattice strains in dissimilar elastic domains (twins). Numerical calculations
are performed for PbTiO3 and BaTiO3 films grown on (001)-oriented cubic
substrates. The "misfit strain-temperature" phase diagrams are developed for
these films, showing stability ranges of various possible polydomain and
single-domain states. Three types of polarization instabilities are revealed
for polydomain epitaxial ferroelectric films, which may lead to the formation
of new polydomain states forbidden in bulk crystals. The total dielectric and
piezoelectric small-signal responses of polydomain films are calculated,
resulting from both the volume and domain-wall contributions. For BaTiO3 films,
strong dielectric anomalies are predicted at room temperature near special
values of the misfit strain.Comment: 19 pages, 8 figure
Cdk5 Phosphorylates Dopamine D2 Receptor and Attenuates Downstream Signaling
The dopamine D2 receptor (DRD2) is a key receptor that mediates dopamine-associated brain functions such as mood, reward, and emotion. Cyclin-dependent kinase 5 (Cdk5) is a proline-directed serine/threonine kinase whose function has been implicated in the brain reward circuit. In this study, we revealed that the serine 321 residue (S321) in the third intracellular loop of DRD2 (D2i3) is a novel regulatory site of Cdk5. Cdk5-dependent phosphorylation of S321 in the D2i3 was observed in in vitro and cell culture systems. We further observed that the phosphorylation of S321 impaired the agonist-stimulated surface expression of DRD2 and decreased G protein coupling to DRD2. Moreover, the downstream cAMP pathway was affected in the heterologous system and in primary neuronal cultures from p35 knockout embryos likely due to the reduced inhibitory activity of DRD2. These results indicate that Cdk5-mediated phosphorylation of S321 inhibits DRD2 function, providing a novel regulatory mechanism for dopamine signaling.X111111sciescopu
First Observation of a Stable Highly Dissipative Divertor Plasma Regime on the Wendelstein 7-X Stellarator
Two-Dimensional Electronic Spectroscopy of Chlorophyll a: Solvent Dependent Spectral Evolution
The interaction of the monomeric chlorophyll Q-band electronic transition with solvents of differing physical-chemical properties is investigated through two-dimensional electronic spectroscopy (2DES). Chlorophyll constitutes the key chromophore molecule in light harvesting complexes. It is well-known that the surrounding protein in the light harvesting complex fine-tunes chlorophyll electronic transitions to optimize energy transfer. Therefore, an understanding of the influence of the environment on the monomeric chlorophyll electronic transitions is important. The Q-band 2DES is inhomogeneous at early times, particularly in hydrogen bonding polar solvents, but also in nonpolar solvents like cyclohexane. Interestingly this inhomogeneity persists for long times, even up to the nanosecond time scale in some solvents. The reshaping of the 2DES occurs over multiple time scales and was assigned mainly to spectral diffusion. At early times the reshaping is Gaussian-like, hinting at a strong solvent reorganization effect. The temporal evolution of the 2DES response was analyzed in terms of a Brownian oscillator model. The spectral densities underpinning the Brownian oscillator fitting were recovered for the different solvents. The absorption spectra and Stokes shift were also properly described by this model. The extent and nature of inhomogeneous broadening was a strong function of solvent, being larger in H-bonding and viscous media and smaller in nonpolar solvents. The fastest spectral reshaping components were assigned to solvent dynamics, modified by interactions with the solute
The observation of nonlinear ion cyclotron wave excitation during high-harmonic fast wave heating in the large helical device
A wave detector, a newly designed magnetic probe, is installed in the large helical device (LHD). This wave detector is a 100-turn loop coil with electrostatic shield. Comparing a one-loop coil to this detector, this detector has roughly constant power coupling in the lower frequency range of40 MHz, and it can easily detect magnetic wave in the frequency of a few megahertz. During high-harmonic fast wave heating, lower frequency waves (<10 MHz) were observed in the LHD for the first time, and for the power density threshold of lower frequency wave excitation (7.5 MHz) the power density of excited pumped wave (38.47 MHz) was approximately ?46 dBm/Hz. Theselower frequencies are kept constant for electron density and high energy particle distribution, and these lower frequency waves seem to be ion cyclotron waves caused by nonlinear wave-particle interaction, for example, parametric decay instability
- …
