5 research outputs found

    The diversity of Porcine Reproductive and Respiratory Syndrome virus type 1 and 2 in Denmark

    Get PDF
    Session - Viral Heterogeneity and EvolutionBoth Type 1 and Type 2 PRRS viruses are circulating among Danish pigs. The first appearance of Type 1 PRRSV in Denmark was in 1992 whereas the Type 2 PRRSV was introduced in 1996 after the use of a live attenuated vaccine that reverted to virulence. Since then, vaccination to control the disease for both PRRSV genotypes has been widely used in Denmark and it is therefore highly relevant to monitor the diversity of currently circulating PRRSV strains. Only subtype 1 of the Type 1 PRRSV strains and vaccine-like Type 2 PRRSV strains were previously detected in Denmark, however, only few Danish PRRSV strains were sequenced. Denmark exports more than 50.000 living pigs each month. A portion of these pigs inevitably harbor PRRSV. Thus, the diversity of PRRSV in Denmark is of interest to other countries besides Denmark. The main objective of the present study was to close the gap in knowledge on the genetic diversity of currently circulating PRRSV stains in Danish pigs by sequencing ORF5 and ORF7 of approximately 41 Type 1 and 50 Type 2 strains isolated between 2003 and 2013. Furthermore, full genome analysis was performed on nine Type 1 and nine Type 2 selected strains. The preliminary assessment of the results showed that the Type 1 strains all belonged to subtype 1. Based on the ORF5 sequences, the Danish Type 1 viruses clustered into two groups. These two groups shared 84 % to 92 % and 94 % to 99 % nucleotide identity to the Lelystad virus, respectively. The sequenced Type 2 viruses showed a significant higher level of identity in that the ORF5 sequences were 94 - >99 % identical at the nucleotide level. Most of the Type 2 viruses, shared high level of identity to the VR2332 vaccine strain (Ingelvac MLV), but a few more diverse isolates were also identified, including strains with interesting deletions in NSP2 and other genes. The full genome sequences of Danish strains showed an overall nucleotide identity of 88-98 % (Type 1) and 94 % to >99 % (Type 2). The impact of these results will be discussed.postprin

    Next-Generation Sequencing in Veterinary Medicine: How Can the Massive Amount of Information Arising from High-Throughput Technologies Improve Diagnosis, Control, and Management of Infectious Diseases?

    No full text
    The development of high-throughput molecular technologies and associated bioinformatics has dramatically changed the capacities of scientists to produce, handle, and analyze large amounts of genomic, transcriptomic, and proteomic data. A clear example of this step-change is represented by the amount of DNA sequence data that can be now produced using next-generation sequencing (NGS) platforms. Similarly, recent improvements in protein and peptide separation efficiencies and highly accurate mass spectrometry have promoted the identification and quantification of proteins in a given sample. These advancements in biotechnology have increasingly been applied to the study of animal infectious diseases and are beginning to revolutionize the way that biological and evolutionary processes can be studied at the molecular level. Studies have demonstrated the value of NGS technologies for molecular characterization, ranging from metagenomic characterization of unknown pathogens or microbial communities to molecular epidemiology and evolution of viral quasispecies. Moreover, high-throughput technologies now allow detailed studies of host-pathogen interactions at the level of their genomes (genomics), transcriptomes (transcriptomics), or proteomes (proteomics). Ultimately, the interaction between pathogen and host biological networks can be questioned by analytically integrating these levels (integrative OMICS and systems biology). The application of high-throughput biotechnology platforms in these fields and their typical low-cost per information content has revolutionized the resolution with which these processes can now be studied
    corecore